California
Great Basin
Great Lakes
Northeast
Northern Plains
N-Cent.Rockies
Pacific Northwest
South Central
Southeast
S. Appalachians
Southwest

Biophysical Site Description
Blackland prairie and woodland occurs on eponymous rich, black, circumneutral topsoils formed over clayey, heavy, usually calcareous subsoils with carbonatic or montmorillonitic mineralogy. The system occurs in association with formations of the Tertiary Jackson (Yazoo Clay), Claiborne (Cook Mountain) and Fleming groups; and the Cretaceous Selma group (Selma, Mooreville or Demopolis chalks). The matrix around the blackland prairies is pine-oak forests growing in acidic, sandier soils with less clay (recent STATSCO soils maps).

Floristic similarity among sites across this geographic range generally appears to be 50% or greater, although a number of different alliances within this type have been recognized according to dominant, co-dominant, and diagnostic species. Extant prairies occur in single patches as well as mosaics less than one acre to over several hundred acres in response to soil depth, slope and fire. Mosaics may include virtually treeless patches associated with other patches of widely scattered trees, open deciduous woodlands and evergreen thickets (red cedar “balds”).

This PNVG represents a mosaic of Eastern Red cedar Woodland, and Post Oak – Blackjack Oak Woodland, and Little Bluestem – Yellow Indiangrass Herbaceous alliances, as classified by NatureServe.
(2005). It is a rare and imperiled vegetation type consisting of scattered remnants. Most of the original cover has been destroyed or altered by conversion to agriculture and the exclusion of fire.

Vegetation Description
Blackland prairie and woodland is a mosaic of southeastern dry-mesic tallgrass vegetation, deciduous woodlands and red cedar thickets or "balds." The prairies are united by the relative abundance of little bluestem (Schizachyrium scoparium) and yellow Indian grass (Sorghastrum nutans), with other herbs including big bluestem (Andropogon gerardii), eastern gamma grass (Tripsacum dactyloides), composite dropseed (Sporobolus compositus), sideoats grama (Bouteloua curtipendula), white prairie clover (Dalea candida), purple prairie clover (Dalea purpurea), pale purple coneflower (Echinacea pallida), blazing-star (Liatris spp.), and resin-weed (Silphium). Woody species include post oak (Quercus stellata), blackjack oak (Q. marilandica), chinquapin oak (Q. muhlenbergii), black oak (Q. velutina), southern red oak (Q. falcata), Durand oak (Q. sinuata var. sinuata), American elm (Ulmus americana), green ash (Fraxinus pennsylvanica), smooth sumac (Rhus glabra), winged sumac (Rhus copallina), and eastern red cedar (Juniperus virginiana).

Disturbance Description
For the last 500-1000 years, fires were probably annual in most of the system, many if not most set by aboriginals. Fires were probably used to clear prairies for agricultural planting, to eliminate woody growth, and to aid in hunting. The modern landscape shows a tendency toward erosion, creating shallow-soil areas known as "cedar balds" where soil erosion, presumably from historic agriculture or over-grazing, has reduced topsoil. These areas often show exposures of underlying chalk. Such areas may have resulted (albeit at much lower frequencies) from aboriginal agriculture or overgrazing by native herbivores.

Adjacency or Identification Concerns
Vegetation differences from mosaic pine-oak forests are dramatic, and can be discerned at a glance from the trained eye even in heavily disturbed sites by looking for key dominant woody plant species. Soils maps show higher clay content and lower sand percentages than for surrounding areas (recent STATSCO soils maps).

Scale Description
Disturbance occurred at a scale often larger than the size of patches, although a significant portion probably originated in the present system. These prairie-woodland mosaics occurred in a pyric matrix, so fire probably swept in frequently from outside. Patches on the order of 40-50 square miles may have burned following a well planned ignition, assuming nocturnal humidity recovery completely extinguished the fire. Smaller patches would have burned within natural barriers, different ignition parameters, and less extreme weather.

Issues/Problems
This model is inclusive, with related systems such as Jackson Prairie and Georgia outliers added to the typical Black Belt type. This makes description of the system less definitive and possibly confusing. The characterization of the type as a woodland - prairie mosaic rather than a simple prairie (as was done in the original PNVG) is truer to what probably occurred pre-historically, but makes the system more difficult to model and describe.

Model Evolution and Comments
PNVG Code: BKBE. Hodges borrowed heavily from McDearman's PNVG description, but changed McDearman's VDDT model to include woodland mosaic from the beginning, and to include an optional disturbance, erosion of topsoil to form red cedar balds (Optional 1 disturbance).

One anonymous review was completed for this model. The reviewer stated the model and description...
should be accepted as is.

Succession Classes

Succession classes are the equivalent of "Vegetation Fuel Classes" as defined in the Interagency FRCC Guidebook (www.frcc.gov).

<table>
<thead>
<tr>
<th>Class</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>70%</td>
</tr>
<tr>
<td>B</td>
<td>25%</td>
</tr>
</tbody>
</table>

Class A 70%

Description
Fire is almost annual in Class A. Large patches of prairie grasslands are the dominant ecotype, covering an estimated 50-90% of the landscape. Mosaics of prairie, thicket and woodland are dominated by prairies in uplands, in a complex, dendritic landscape, with heterogeneous age classes in woodlands and interconnected grassland patches. Red cedar at the edges of bald thickets are scorched or killed by fire. With no fire, Class A disappears within 5 years in this model, when it succeeds to Class B.

Indicator Species* and Canopy Position

<table>
<thead>
<tr>
<th>Species</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCSC</td>
<td>Lower</td>
</tr>
<tr>
<td>SOUNU2</td>
<td>Lower</td>
</tr>
<tr>
<td>ANGE</td>
<td>Lower</td>
</tr>
<tr>
<td>TRDA3</td>
<td>Lower</td>
</tr>
</tbody>
</table>

Upper Layer Lifeform

- **Herbaceous**
- **Tree**

Fuel Model 3

<table>
<thead>
<tr>
<th>Structure Data (for upper layer lifeform)</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover</td>
<td>0%</td>
<td>60%</td>
</tr>
<tr>
<td>Height</td>
<td>0%</td>
<td>60%</td>
</tr>
<tr>
<td>Tree Size Class</td>
<td>no data</td>
<td></td>
</tr>
</tbody>
</table>

Class B 25%

Description
Fire has been excluded for 5 years. Large patches of prairie are uncommon to rare, covering about 25-50% of the landscape. Mosaics tend toward dominance by deciduous woodlands, with some prairie patches interconnected and some isolated within woodlands. Forests are rare. With no fire, Class B disappears within 25 years in this model, succeeding to Class C. With fire, Class B still has enough fuels to cycle back to Class A; I postulate no closed loop perpetuating Class B.

Indicator Species* and Canopy Position

<table>
<thead>
<tr>
<th>Species</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCSC</td>
<td>Lower</td>
</tr>
<tr>
<td>JUVI</td>
<td>Middle</td>
</tr>
<tr>
<td>QUST</td>
<td>Mid-Upper</td>
</tr>
<tr>
<td>SOUNU2</td>
<td>Lower</td>
</tr>
</tbody>
</table>

Upper Layer Lifeform

- **Herbaceous**
- **Shrub**
- **Tree**

Fuel Model 2

<table>
<thead>
<tr>
<th>Structure Data (for upper layer lifeform)</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover</td>
<td>0%</td>
<td>60%</td>
</tr>
<tr>
<td>Height</td>
<td>no data</td>
<td></td>
</tr>
<tr>
<td>Tree Size Class</td>
<td>Medium 9-21”DBH</td>
<td></td>
</tr>
</tbody>
</table>

*Dominant and Indicator Species are from the NRCS PLANTS database. To check a species code, please visit http://plants.usda.gov.

8/11/2008

Page 3 of 9
Class C 0%

Mid1 All Structures

Description
Fire has been excluded for 25 years. Woodlands are the dominant cover type, with prairie patches generally isolated or small, covering about 5-25% of the landscape. The woodland canopy cover is taller, with trees tending toward maturity. Some patches of forest are present. Species within forests tend toward a mix of fire tolerant and intolerant. With no fire, Class C disappears within 50 years in this model, succeeding to Class D. Class C might have persisted in somewhat isolated situations with occasional fire (25-50-year return interval).

Indicator Species* and Canopy Position
- QUST Upper
- JUVI Middle
- QUMA3 Middle
- SCSC Lower

Upper Layer Lifeform
- Herbaceous
- Shrub
- Tree

Fuel Model 2

<table>
<thead>
<tr>
<th>Structure Data (for upper layer lifeform)</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover</td>
<td>30%</td>
<td>100%</td>
</tr>
<tr>
<td>Height</td>
<td>no data</td>
<td>Tree Medium 10-24m</td>
</tr>
<tr>
<td>Tree Size Class</td>
<td>Medium 9-21”DBH</td>
<td></td>
</tr>
</tbody>
</table>

Upper layer lifeform differs from dominant lifeform. Height and cover of dominant lifeform are:

Class D 0%

Late1 Closed

Description
Fire has been excluded for 50+ years. Forests are dominant, with patches of woodland and rare prairie remnants surviving only in edaphically controlled conditions in less than 5% of the landscape. Forests are mixed, with fire-intolerant species achieving dominance in many areas. With no fire, Class D dominates the landscape, with 95% coverage after 50 years, according to this model. This could happen in a forest patch isolated by wetlands.

Indicator Species* and Canopy Position
- QUST Upper
- CELA Upper
- FRVI Upper
- JUVI Mid-Upper

Upper Layer Lifeform
- Herbaceous
- Shrub
- Tree

Fuel Model 8

<table>
<thead>
<tr>
<th>Structure Data (for upper layer lifeform)</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover</td>
<td>60%</td>
<td>100%</td>
</tr>
<tr>
<td>Height</td>
<td>no data</td>
<td>Tree Tall 25-49m</td>
</tr>
<tr>
<td>Tree Size Class</td>
<td>Large 21-33”DBH</td>
<td></td>
</tr>
</tbody>
</table>

Upper layer lifeform differs from dominant lifeform. Height and cover of dominant lifeform are:

Dominant and Indicator Species are from the NRCS PLANTS database. To check a species code, please visit http://plants.usda.gov.

8/11/2008
Class E 5%

Late2 All Structures

Description
Erosion has removed most or all topsoil from subsoils or Cretaceous chalk. Eastern red cedar occurs in patches of varying size, from individuals through small groups to large thickets. The canopy is variable, with patches of trees interspersed with bare ground or sparse herb cover. Outcrops of chalk occur. Fire may remove some or all red cedars in a patch, but the class depends on lack of soil, so the presumption is that it will reseed and replace itself. This Class may have resulted from aboriginal agriculture or via overgrazing by native grazers. I assume that if left alone, soils will form as plants colonize the patch, and that Class E will eventually succeed to Class A. A default of 500 years is used for this transition, but this is a guess.

Fire Regime Group: 1

I: 0-35 year frequency, low and mixed severity
II: 0-35 year frequency, replacement severity
III: 35-200 year frequency, low and mixed severity
IV: 35-200 year frequency, replacement severity
V: 200+ year frequency, replacement severity

Historical Fire Size (acres)
- Avg:
- Min:
- Max:

Sources of Fire Regime Data
- Literature
- Local Data
- Expert Estimate

Indicator Species and **Canopy Position**
- JUVI: Low-Mid
- RHGL: Low-Mid
- RHCO: Lower
- SCSC: Lower

Upper Layer Lifeform
- Herbaceous
- Shrub
- Tree

Fuel Model 4

Structure Data (for upper layer lifeform)

<table>
<thead>
<tr>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover</td>
<td>25 %</td>
</tr>
<tr>
<td>Height</td>
<td>no data</td>
</tr>
<tr>
<td>Tree Size Class</td>
<td>Medium 9-21" DBH</td>
</tr>
</tbody>
</table>

Disturbances

Non-Fire Disturbances Modeled
- Insects/Disease
- Wind/Weather/Stress
- Native Grazing
- Competition
- Other: Aboriginal agric. & grazing
- Other:

Sources of Fire Regime Data
- Literature
- Local Data
- Expert Estimate

Fire Intervals (FI):
Fire interval is expressed in years for each fire severity class and for all types of fire combined (All Fires). Average FI is the central tendency modeled. Minimum and maximum show the relative range of fire intervals, if known. Probability is the inverse of fire interval in years and is used in reference condition modeling. Percent of all fires is the percent of all fires in that severity class. All values are estimates and not precise.

<table>
<thead>
<tr>
<th>Fire Regimes</th>
<th>Avg FI</th>
<th>Min FI</th>
<th>Max FI</th>
<th>Probability</th>
<th>Percent of All Fires</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replacement</td>
<td>7</td>
<td>0.14286</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixed</td>
<td>2.2</td>
<td>0.45455</td>
<td>76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Fires</td>
<td>2</td>
<td>0.59741</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dominant and Indicator Species are from the NRCS PLANTS database. To check a species code, please visit http://plants.usda.gov.
References

Dominant and Indicator Species are from the NRCS PLANTS database. To check a species code, please visit http://plants.usda.gov.

*Dominant and Indicator Species are from the NRCS PLANTS database. To check a species code, please visit http://plants.usda.gov.

PERSONAL COMMUNICATION (if applicable):

Tom Foti, Arkansas Natural Heritage Commission, Little Rock, AR.

Ron Masters, Tall Timbers Research Station, Tallahassee, FL.

Ron Wieland, Mississippi Department of Wildlife, Fisheries and Parks, MS Museum of Natural Science, Jackson, MS.

Douglas Zollner, The Nature Conservancy, Arkansas Chapter, Little Rock, AR.

Latimore Smith, The Nature Conservancy, Louisiana Chapter, Baton Rouge, LA.

Hodges' references:

Dominant and Indicator Species are from the NRCS PLANTS database. To check a species code, please visit http://plants.usda.gov.
STATSCO maps courtesy of Jim Menakis, LandFire workshop cadre.

*Dominant and Indicator Species are from the NRCS PLANTS database. To check a species code, please visit http://plants.usda.gov.