The Rapid Assessment is a component of the LANDFIRE project. Reference condition models for the Rapid Assessment were created through a series of expert workshops and a peer-review process in 2004-2005. For more information, please visit www.landfire.gov. Please direct questions to helpdesk@landfire.gov.

Potential Natural Vegetation Group (PNVG):

R5XTMB Cross Timbers

General Information

Contributors (additional contributors may be listed under “Model Evolution and Comments”)

Modelers
- Ron Masters

Reviewers
- Stacy Clark
- David Engle
- Doug Zollner

Vegetation Type

- **Dominant Species**
 - QUST
 - QUMA3
 - SCHIZ4
 - ANGE

General Model Sources

- Literature
- Local Data
- Expert Estimate

Rapid Assessment Model Zones

- California
- Pacific Northwest
- Great Basin
- South Central
- Great Lakes
- Southeast
- Northeast
- S. Appalachians
- Northern Plains
- Southwest
- N-Cent.Rockies

Geographic Range

This PNVG lies in central parts of Texas, Oklahoma and Kansas.

Biophysical Site Description

This PNVG generally has sandy to loam Ustalf soils that are from moderately deep to shallow (NatureServe 2005). Moderate rainfall region with periodic severe drought (Johnson and Risser 1971, 1973). The vegetation occurs in bands across the landscape associated strongly with soil type. Available soil water (dictated by soil depth, texture, and topographic position) also has a major influence on vegetation.

Vegetation Description

Historical accounts describe post-replacement shrub-scrub (early coppice) areas of cross timbers in addition to open and closed canopy conditions. The Cross Timbers is an ecotone between prairie and eastern deciduous forests. The black-capped vireo’s historic range was associated with the post-replacement cross timbers vegetation type. Washington Irving and others have described areas of cross timbers that were evidently mid-seral closed and possibly late-seral closed, because of their inability to penetrate the forest on horse back and their description of the branching present in those stands. Yet others describe stands within the cross timbers that were easily traversed via wagon. Based on historical accounts and limited analysis of General Land Office survey data, more closed canopy conditions occurred on the landscape than might be expected for a frequent fire regime.

The vegetation is dominated by Post oak (Quercus stellata) and to a lesser extent blackjack oak (Q. marilandica). In the eastern extent, hickory (Carya spp.) and black oak (Quercus velutina) may be a constituent, with occasional elm (Ulmus americana) and eastern-red cedar (Juniperus virginiana) in protected areas. In open conditions the understory and canopy openings are dominated by big bluestem (Andropogon gerardii), little bluestem (Schizachyrium scoparium), Indiangrass (Sorghastrum nutans), and

Dominant and Indicator Species are from the NRCS PLANTS database. To check a species code, please visit http://plants.usda.gov.
various annual and perennial forbs with prevalence dictated by stand density and overstory canopy cover. In closed canopy conditions, groundcover has little to no herbaceous cover and is dominated by oak leaf litter. Other important woody plants include chittamwood (Bumelia lanuginosa), roughleaf dogwood (Cornus drummondi), greenbriar (Smilax spp.), sumac (Rhus spp.) and poison ivy (Toxicodendron radicans). Dense structure is found from the lower to upper midstory in closed canopy conditions with persistent branches composing much of structure along with numerous small to medium diameter stems. In the eastern extent, Vaccinium spp. may contribute to lower midstory structure in closed canopy stands. The Cross Timbers is generally found within a landscape matrix of tallgrass prairie.

Disturbance Description
This PNVG is fire regime group I, with frequent surface fires. Fire frequency is considered to be similar to adjacent forested ecosystems. The limited information available on fire chronologies is supportive of this assumption. Fire regimes are assumed to be a result of both aboriginal and lightning origin. Fire history studies from southwest Missouri and southeast Oklahoma suggest a mean fire return interval of 3-4 years. Major drought cycles occur at approximately 20 year intervals and may influence periodic stand replacement fire depending on the season of fire. Fires have been reported to occur during and following drought periods. Mosaic fire or mixed severity fire is thought to play some role associated with drought cycles where leaves and grass are the primary fuel for carrying a fire. Surface fires were primarily wind driven fires in open (prairie) conditions over a fuel bed of predominantly grass although occasionally surface fires might have occurred in leaf litter given dry conditions. Historic prairie fires have been noted to slow down or stop at the border of cross timbers vegetation, presumably when leaf moisture was high. Surface fire would penetrate or burn completely through late-seral, open stands.

Adjacency or Identification Concerns
The PNVG occurs adjacent to tallgrass or mixed prairie or within a landscape matrix with patches of prairie. Oaks will encroach into prairie areas of the crossttimbers without fire. The deep alluvial soils of the bottomlands are not included in this PNVG.

Scale Description
The size and connectedness of patches varies, from small patches of 200 acres to well over several thousand square miles.

Issues/Problems
Areas of Cross Timbers existed in fire shadows at the juncture of rivers or larger streams. In areas that were rocky these areas may have limited fire influence and were essentially locked up on the landscape in late seral stages (Clark 2003, Clark and Hallgren 2004). These areas varied in canopy closure depending on soil type. Some of these protected areas may have had a high surface rock component with less canopy cover and soil types with less rock may have been more dense with near complete canopy closure. Little information is available on disturbance and successional history in the Cross Timbers region. Also, lack of historical information makes determining the percentage of landscape in each class difficult.

Model Evolution and Comments
Suggested reviewers: Dr. David M. Engle and Dr. Terry Bidwell, Oklahoma State University. Dr. Bruce Hoagland, Natural Heritage Inventory, University of Oklahoma. Dr. Stacy Clark, Post-Doc University of Tennessee and also (USFS) Alabama A&M (??). PNVG description was expanded upon review.
Class B 20 %

Mid1 Closed

Description
Mid-seral with closed canopy (Cover >60%) sapling to pole-sized oak with little or no herbaceous understory. Often coppice origin. Dense structure is found from the lower to upper midstory in closed canopy conditions with persistent branches composing much of structure along with numerous small to medium diameter stems. In the eastern extent, Vaccinium spp. may contribute to lower midstory structure in closed canopy stands. 20-79 years of age.

Indicator Species* and Canopy Position
QUST Upper
QUMA3 Mid-Upper
SCHIZ4 Lower
ANGE

Upper Layer Lifeform
☐ Herbaceous
☐ Shrub
☑ Tree

Fuel Model 9

Structure Data (for upper layer lifeform)

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover</td>
<td>0 %</td>
<td>80 %</td>
</tr>
<tr>
<td>Height</td>
<td>Tree Regen <5m</td>
<td>Tree Short 5-9m</td>
</tr>
<tr>
<td>Tree Size Class</td>
<td>Sapling >4.5ft; <5"DBH</td>
<td></td>
</tr>
</tbody>
</table>

☐ Upper layer lifeform differs from dominant lifeform. Height and cover of dominant lifeform are:

Initially grasses will be dominant life form but will rapidly be overtaken and shaded out (to some extent) by coppice regeneration.

Class C 30 %

Mid1 Open

Description
Mid-seral woodland/savanna overstory with perennial grasses (Cover <60%). Open and somewhat park-like, this class may have some smaller mid-story trees but overall understory is dominated with little and big bluestem. More mesic sites may have switchgrass or other panic grass component.

Indicator Species* and Canopy Position
QUST Upper
QUMA3 Mid-Upper
SCHIZ4 Lower
ANGE

Upper Layer Lifeform
☐ Herbaceous
☐ Shrub
☑ Tree

Fuel Model 3

Structure Data (for upper layer lifeform)

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover</td>
<td>20 %</td>
<td>60 %</td>
</tr>
<tr>
<td>Height</td>
<td>Tree Medium 10-24m</td>
<td>Tree Medium 10-24m</td>
</tr>
<tr>
<td>Tree Size Class</td>
<td>Pole 5-9" DBH</td>
<td></td>
</tr>
</tbody>
</table>

☐ Upper layer lifeform differs from dominant lifeform. Height and cover of dominant lifeform are:

There is an east to west decline in average tree height and diameter corresponding to a decreasing moisture gradient. Figures given reflect the central part of the range. As one goes further west, trees may actually drop a height and size class for min and max height and size class. Trees will not move up a class going to the east.
Disturbances

20-79 years of age.

Fuel Model 2

Class D 25%

Late1 Open

Description
Mid-seral woodland/savanna oak overstory with perennial grasses (Cover <60%). This class is open and park-like with a tallgrass component of little and big bluestem. More mesic sites may have switchgrass or other panic grass component. 80+ years of age.

<table>
<thead>
<tr>
<th>Indicator Species* and Canopy Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUST Upper</td>
</tr>
<tr>
<td>QUMA3 Mid-Upper</td>
</tr>
<tr>
<td>SCHIZ4 Lower</td>
</tr>
<tr>
<td>ANGE Lower</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Upper Layer Lifeform</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Herbaceous</td>
</tr>
<tr>
<td>☐ Shrub</td>
</tr>
<tr>
<td>☑ Tree</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Structure Data (for upper layer lifeform)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
</tr>
<tr>
<td>Cover</td>
</tr>
<tr>
<td>Height</td>
</tr>
<tr>
<td>Tree Size Class</td>
</tr>
</tbody>
</table>

 Upper layer lifeform differs from dominant lifeform. Height and cover of dominant lifeform are:

There is a east to west decline in average tree height and diameter corresponding to a decreasing moisture gradient. Figures given reflect the central part of the range. As one goes further west, trees may actually drop a height and size class for min and max height and size class. You will not move up a class going to the east.

Fuel Model 2

Class E 10%

Late1 Closed

Description
Late-seral, closed canopy (Cover >60%) oak dominated overstory community. Little to no herbaceous cover and some shrub component. Varying from east to west. Dense structure is found from the lower to upper midstory in closed canopy conditions with persistent branches composing much of structure along with numerous small to medium diameter stems. In the eastern extent, Vaccinium spp. may contribute to lower midstory structure in closed canopy stands. 80+ years of age.

<table>
<thead>
<tr>
<th>Indicator Species* and Canopy Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUST Upper</td>
</tr>
<tr>
<td>QUMA3 Mid-Upper</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Upper Layer Lifeform</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Herbaceous</td>
</tr>
<tr>
<td>☐ Shrub</td>
</tr>
<tr>
<td>☑ Tree</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Structure Data (for upper layer lifeform)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
</tr>
<tr>
<td>Cover</td>
</tr>
<tr>
<td>Height</td>
</tr>
<tr>
<td>Tree Size Class</td>
</tr>
</tbody>
</table>

 Upper layer lifeform differs from dominant lifeform. Height and cover of dominant lifeform are:

There is a east to west decline in average tree height and diameter corresponding to a decreasing moisture gradient. Figures given reflect the central part of the range. As one goes further west, trees may actually drop a height and size class for min and max height and size class. Trees will not move up a class going to the east.

Disturbances

Dominant and Indicator Species are from the NRCS PLANTS database. To check a species code, please visit http://plants.usda.gov.
Non-Fire Disturbances Modeled

- Insects/Disease
- Wind/Weather/Stress
- Native Grazing
- Competition
- Other:
- Other:

Fire Regime Group: 1

I: 0-35 year frequency, low and mixed severity
II: 0-35 year frequency, replacement severity
III: 35-200 year frequency, low and mixed severity
IV: 35-200 year frequency, replacement severity
V: 200+ year frequency, replacement severity

Fire Intervals (FI):
Fire interval is expressed in years for each fire severity class and for all types of fire combined (All Fires). Average FI is the central tendency modeled. Minimum and maximum show the relative range of fire intervals, if known. Probability is the inverse of fire interval in years and is used in reference condition modeling. Percent of all fires is the percent of all fires in that severity class. All values are estimates and not precise.

Historical Fire Size (acres)
Avg: 200
Min: 10
Max: 2000

Sources of Fire Regime Data

- Literature
- Local Data
- Expert Estimate

<table>
<thead>
<tr>
<th>Sources of Fire Regime Data</th>
<th>Avg FI</th>
<th>Min FI</th>
<th>Max FI</th>
<th>Probability</th>
<th>Percent of All Fires</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replacement</td>
<td>170</td>
<td>0.00588</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixed</td>
<td>250</td>
<td>0.004</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface</td>
<td>6</td>
<td>0.16667</td>
<td>94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Fires</td>
<td>6</td>
<td>0.17655</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References

*Dominant and Indicator Species are from the NRCS PLANTS database. To check a species code, please visit http://plants.usda.gov.

Elwell, H. M. 1970. Burning and 2,4,5-T on post and blackjack oak rangeland in Oklahoma. Oklahoma Agricultural Experiment Station, Stillwater, OK.

*Dominant and Indicator Species are from the NRCS PLANTS database. To check a species code, please visit http://plants.usda.gov.

*Dominant and Indicator Species are from the NRCS PLANTS database. To check a species code, please visit http://plants.usda.gov.

*Dominant and Indicator Species are from the NRCS PLANTS database. To check a species code, please visit http://plants.usda.gov.

Dominant and Indicator Species are from the NRCS PLANTS database. To check a species code, please visit http://plants.usda.gov.