Biophysical Site Description
This type typically occurs on upland flats, benches, gentle slopes, and in the foothills of the desert mountain ranges. Soils can range from shallow and rocky, to deep loamy, to heavy clay soils.

Vegetation Description
Vegetation in this system can be characterized as an open shrubland with grass dominated by mesquite, catclaw acacia, creosote bush, tarbush, flourensia, opuntia, yucca, black grama, tobosa grass, blue grama, sideoats grama, and various threeawn species, with intermingled forbs. This type correlates with Kuchler’s (1964) types 58 and 59.

Disturbance Description
Naturally, this system experiences frequent, stand replacing fire occurrences that are associated with average to above average herbaceous biomass production cycles that are related to average to above average moisture periods. Mixed fires also may occur. A mixed fire will not kill all the shrubs due to reduced fuel loads. The mean fire interval is approximately 10 years with high variation due to year to year deviation in grass production related to drought and moisture cycles. Fire years are typically bimodal occurring in the late spring (May and June) and fall (September and October) correlated with grass production following spring and summer monsoon moisture. Removal of the fine fuels through grazing activities increases the variation of the fire interval.

Adjacency or Identification Concerns
This ecological system is a broadly defined desert grassland, mixed shrub-succulent or xeromorphic tree

Dominant and Indicator Species are from the NRCS PLANTS database. To check a species code, please visit http://plants.usda.gov.
This landscape is adequate in size to contain natural variation in vegetation, soils, and disturbance regimes.

Issues/Problems

Fire and climate are the primary factors influencing this ecological system. Drought and lack of fire tend to increase invasive woody species and reduce the herbaceous component. Impacts of historic grazing by buffalo may not have played a significant impact in this system in Arizona and New Mexico. Invasive species such as burrow weed (Isocoma tenuisecta) and broom snakeweed (Gutierrezia sarothrae) can take advantage of cool-season precipitation and dominate on disturbed sites; pricklypear and cholla (Opuntia spp.) can also dominate on disturbed sites and outcompete herbaceous species thereby reducing fuel continuity and reduce the controlling effects of fire.

Model Evolution and Comments

Compare information with NRCS ecological site descriptions; ask for review by NRCS Plant Materials Specialist located at the Tucson Plant Materials Center, 520-292-2999: (Bruce Munda - bruce.munda@az.usda.gov) and NRCS Rangeland Specialist Dan Robinett (dan.robinett@az.usda.gov). Ask for review by U of A professors: George Ruyle and Mitch McClaran. Contact range professors at New Mexico State for review.

Succession Classes

Succession classes are the equivalent of "Vegetation Fuel Classes" as defined in the Interagency FRCC Guidebook (www.frcc.gov).

<table>
<thead>
<tr>
<th>Class A</th>
<th>10 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early1 All Structures</td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>This Class is dominated by resprouts of desert grassland species and post-fire associated forbs and half-shrubs. This Class typically exists where fires have burned relatively hot (replacement fire severity) in Classes B and C. Succession in this Class can quickly progress to either Class B or Class C, depending on soil types.</td>
<td></td>
</tr>
</tbody>
</table>

Indicator Species

- PLMU3: Mid-Upper
- BOCU: Mid-Upper
- ARIST: Mid-Upper
- PROSO: Upper

Upper Layer Lifeform

- **Herbaceous**
- **Shrub**
- **Tree**

Structure Data (for upper layer lifeform)

<table>
<thead>
<tr>
<th>Cover</th>
<th>10 %</th>
<th>30 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>Herb Short <0.5m</td>
<td>Shrub Short 0.5-0.9m</td>
</tr>
<tr>
<td>Tree Size Class</td>
<td>no data</td>
<td></td>
</tr>
</tbody>
</table>

Fuel Model

Upper layer lifeform differs from dominant lifeform. Height and cover of dominant lifeform are:

The dominant lifeform at this successional stage is primarily comprised of various herbaceous grass and forb species (both annual and perennial).

*Dominant and Indicator Species are from the NRCS PLANTS database. To check a species code, please visit http://plants.usda.gov.
Class B 5%
Mid1 Closed
Description
Greater than 15 percent shrub cover and 30-50 percent grass and forb cover; generally associated with more productive soils. Effects of cumulative drought can cause a shift from this class to Class C. Successional progression from Class A to this Class occurs on deep, productive soil types. Surface fires can maintain this Class. Mixed severity fires can move this system to Class C. Native grazing may have had minimal impact on this landscape.

Indicator Species
- PROSO: Upper
- ACR: Upper
- YUCCA: Upper
- PLMU3: Lower

Upper Layer Lifeform
- ☑ Herbaceous
- ☑ Shrub
- ☑ Tree

Fuel Model 1

Structure Data (for upper layer lifeform)
<table>
<thead>
<tr>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover</td>
<td>15%</td>
</tr>
<tr>
<td>Height</td>
<td>Shrub Medium 1.0-2.9m</td>
</tr>
<tr>
<td>Tree Size Class</td>
<td>no data</td>
</tr>
</tbody>
</table>

Class C 85%
Mid1 Open
Description
Less than 15 percent shrub cover and 20 to 40 percent grass and forb cover generally associated with less productive cobbly and gravelly soils. Successional progression from Class A to this Class occurs on dry, less productive soil types.

Indicator Species
- PROSO: Upper
- ACR: Upper
- PLMU3: Lower
- BOCU: Lower

Upper Layer Lifeform
- ☑ Herbaceous
- ☑ Shrub
- ☑ Tree

Fuel Model 1

Structure Data (for upper layer lifeform)
<table>
<thead>
<tr>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover</td>
<td>5%</td>
</tr>
<tr>
<td>Height</td>
<td>Shrub Medium 1.0-2.9m</td>
</tr>
<tr>
<td>Tree Size Class</td>
<td>no data</td>
</tr>
</tbody>
</table>

Class D 0%
Late1 All Structures
Description

Indicator Species
- PROSO: Upper
- ACR: Upper
- PLMU3: Lower

Upper Layer Lifeform
- ☑ Herbaceous
- ☑ Shrub
- ☑ Tree

Fuel Model no data

Structure Data (for upper layer lifeform)
<table>
<thead>
<tr>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover</td>
<td>0%</td>
</tr>
<tr>
<td>Height</td>
<td>no data</td>
</tr>
<tr>
<td>Tree Size Class</td>
<td>no data</td>
</tr>
</tbody>
</table>

*Dominant and Indicator Species are from the NRCS PLANTS database. To check a species code, please visit http://plants.usda.gov.

8/11/2008
Page 3 of 5
Disturbances

Non-Fire Disturbances Modeled
- Insects/Disease
- Wind/Weather/Stress
- Native Grazing
- Competition
- Other:

Fire Regime Group: 2
- I: 0-35 year frequency, low and mixed severity
- II: 0-35 year frequency, replacement severity
- III: 35-200 year frequency, low and mixed severity
- IV: 35-200 year frequency, replacement severity
- V: 200+ year frequency, replacement severity

Fire Intervals (FI):
Fire interval is expressed in years for each fire severity class and for all types of fire combined (All Fires). Average FI is the central tendency modeled. Minimum and maximum show the relative range of fire intervals, if known. Probability is the inverse of fire interval in years and is used in reference condition modeling. Percent of all fires is the percent of all fires in that severity class. All values are estimates and not precise.

<table>
<thead>
<tr>
<th>FI</th>
<th>Avg FI</th>
<th>Min FI</th>
<th>Max FI</th>
<th>Probability</th>
<th>Percent of All Fires</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replacement</td>
<td>12</td>
<td>0.08333</td>
<td>76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixed</td>
<td>37</td>
<td>0.02703</td>
<td>24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sources of Fire Regime Data
- Literature
- Local Data
- Expert Estimate

References

*Dominant and Indicator Species are from the NRCS PLANTS database. To check a species code, please visit http://plants.usda.gov.