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Abstract. Maps of fuels and fire regimes are essential for understanding ecological 
relationships between wildland fire and landscape structure, composition, and function, and 
for managing wildland fire hazard and risk with an ecosystem perspective. While critical 
for successful wildland fire management, there are no standard methods for creating these 
maps, and spatial data representing these important characteristics of wildland fire are 
lacking in many areas. We present an integrated approach for mapping fuels and fire regimes 
using extensive field sampling, remote sensing, ecosystem simulation, and biophysical 
gradient modeling to create predictive landscape maps of fuels and fire regimes. A main 
objective was to develop a standardized, repeatable system for creating these maps using 
spatial data describing important landscape gradients along with straightforward statistical 
methods. We developed a hierarchical approach to stratifying field sampling to ensure that 
samples represented variability in a wide variety of ecosystem processes. We used existing 
and derived spatial layers to develop a modeling database within a Geographic Information 
System that included 38 mapped variables describing gradients of physiography, spectral 
characteristics, weather, and biogeochemical cycles for a 5830-km2 study area in north­
western Montana. Using general linear models, discriminant analysis, classification and 
regression trees, and logistic regression, we created maps of fuel load, fuel model, fire 
interval, and fire severity based on spatial predictive variables and response variables 
measured in the field. Independently evaluated accuracies ranged from 51 to 80%. Direct 
gradient modeling improved map accuracy significantly compared to maps based solely on 
indirect gradients. By focusing efforts on direct as opposed to indirect gradient modeling, 
our approach is easily adaptable to mapping potential future conditions under a range of 
possible management actions or climate scenarios. Our methods are an example of a standard 
yet flexible approach for mapping fuels and fire regimes over broad areas and at multiple 
scales. The resulting maps provide fine-grained, broad-scale information to spatially assess 
both ecosystem integrity and the hazards and risks of wildland fire when making decisions 
about how best to restore forests of the western United States to within historical ranges 
and variability. 
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INTRODUCTION 

Wildland fire is a keystone ecosystem process af­
fecting many landscapes of the western United States. 
It regulates succession by selecting and regenerating 
plants, maintains biodiversity, and entrains ecosystem 
and biogeochemical processes at multiple scales (John­
son 1992, Crutzen and Goldammer 1993, Swetnam and 
Betancourt 1998). Fire regimes describe the historical 
role of wildland fire in an ecosystem and integrate the 
frequency, severity, and spatial distribution of fires for 
specific landscapes over time (Mooney et al. 1981, 
Agee 1993, Morgan et al. 2001). Since the late 19th 
century, many forests in the interior western United 
States have been altered by the systematic and com­
prehensive exclusion of wildland fire (Covington et al. 
1994, Leenhouts 1998). This legacy of fire exclusion 
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has perturbed natural fire regimes and resulted in ex­
cessive accumulations of forest fuels, as vegetation that 
would have previously been consumed by fire remains 
unburned (Arno 1976, Habeck 1985, Allen et al. 2002, 
Keane et al. 2002a). 

Wildland fire managers require spatially explicit, 
comprehensive information on fuels and fire regimes 
for long-term planning focused on restoring fuel and 
fire regime condition in high-risk areas to within pre­
20th century ranges. Maps of fuels and fire regimes 
based on gradient modeling can provide information 
on the climatic or landscape variables and the poten­
tially complex interactions between these variables that 
determine fire regimes at broad scales. While maps of 
fuels and fire regimes provide key information for ef­
fective fire management and ecological restoration, 
they exist for only a few areas, and standardized meth­
ods for economically and efficiently creating these 
maps do not exist (Keane et al. 2001, Morgan et al. 
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2001). Mapping fuels and fire regime at landscape 
scales (1000s to 10 000s of km2) generally requires 
advanced Geographic Information System (GIS) tech­
niques and complex statistical analyses (Keane et al. 
2001, Morgan et al. 2001). The difficulty of creating 
these maps is compounded by the complex spatial and 
temporal dynamics of wildland fire. A combined ap­
proach integrating extensive field databases, multiple 
sources of fire history information, remote sensing, and 
biophysical modeling to map fuels and fire regimes is 
recommended (Keane et al. 2001, Morgan et al. 2001). 

Wildland fuels represent the biomass available for 
fire ignition and combustion in wildland fires and are 
the one parameter affecting wildland fire that humans 
can control (Rothermel 1972). ‘‘Fuels’’ are defined as 
the characteristics of live and dead biomass (e.g., mass 
and density) that contribute to the spread and intensity 
of wildland fire (Burgan and Rothermel 1984). Often, 
the term ‘‘fuel load’’ is used to describe the compo­
sition and physical characteristics of fuel for an area. 
However, adequate depiction of the fuel load is difficult 
and often a generalized description of fuel properties 
(the ‘‘fuel model’’) is used (Anderson 1982, Sandberg 
et al. 2001). Fuel models represent the typical fire be­
havior or fuel condition for a specific site. Current fuel 
models are limited to the prediction of fire behavior 
because they do not include sufficiently detailed in­
formation on fuel loadings or fuel moistures needed 
for fire effects calculations. 

Most attempts at mapping fuels focus on mapping 
fuel models (or some other comprehensive description 
of fuels) using classifications of vegetation and bio­
physical setting (indices that integrate weather, topog­
raphy, and site characteristics; Burgan 1996, Keane et 
al. 2001, Sandberg et al. 2001). There are many factors 
that limit the ability to map fuels. Most passive re­
motely sensed data (e.g., Landsat-TM, AVHRR, MOD­
IS) are unable to detect surface fuels because these 
sensors generally cannot penetrate forest canopies (La­
chowski et al. 1995). Even if airborne sensors could 
penetrate the canopy, it is difficult to distinguish be­
tween surface and canopy fuel sizes and categories us­
ing standard image processing techniques (Keane et al. 
2001). Accurate fuel mapping is also confounded by 
the high spatial and temporal variability of fuels (Agee 
and Huff 1987). Fuel maps (fuel loadings or fuel mod­
els) represent single instances in a physical template 
affecting the spread and intensity of wildland fire that 
changes constantly over time. 

The ‘‘fire regime’’ of an area represents the temporal 
variability in the physical characteristics and subse­
quent effects of wildland fire. Fire regimes are usually 
defined in terms of fire frequency, severity, size, and 
pattern. A fire regime is a general description of the 
role of fire for a specific area or ecosystem; it refers 
to the ‘‘nature of fires occurring over an extended pe­
riod of time’’ (Brown 1995, Morgan et al. 2001). Fire 
regimes integrate complex interactions of fire, vege­

tation, climate, and topography (Agee 1993). The fire 
regime for a specific landscape influences the structure 
and abundance of fuel, thereby affecting fire behavior 
and fire effects over time. In this paper, fire regimes 
are described by fire interval and fire severity over the 
last 100–400 years. These descriptors of fire regimes 
are most important for predicting fire effects on land­
scapes and have been used in the majority of studies 
evaluating fire regimes (e.g., Barrett et al. 1991, Brown 
et al. 1994, Swetnam and Baisan 1996, Agee and Kru­
semark 2001, Morgan et al. 2001). Mean fire interval, 
the average number of years between fires for an area, 
is often used to quantify the frequency of fire for a 
landscape. Mean fire interval is a main focus of most 
research evaluating fire regimes because repeated fires 
are important determinants of the successional status 
of ecosystems and biogeochemical dynamics, and it is 
possible to reconstruct long fire histories for many eco­
systems (e.g., Heinselman 1973, Arno 1980, Baisan 
and Swetnam 1990, Niklasson and Granström 2000, 
Heyerdahl et al. 2001). 

Maps of historical fire intervals provide a temporal 
context for current conditions. Current landscapes with 
departures of one or more fire intervals have been used 
to (1) identify areas of low ecosystem integrity (Swet­
nam et al. 1999, Quigley et al. 2001), (2) identify areas 
with accumulating fuels (Brown et al. 1994, Hardy et 
al. 2001), (3) develop strategic fire management plans 
(Hardy et al. 2001, Morgan et al. 2001), and (4) pri­
oritize areas for ecological restoration (Hardy and Arno 
1996, Allen et al. 2002). Maps of fire intervals are also 
valuable for calibrating, parameterizing, and validating 
landscape–fire models that focus on how changing cli­
mate or management strategies will affect fire regimes 
and vegetation dynamics (vanWagtendonk 1985, Keane 
et al. 1996, Schmoldt et al. 1999). 

Many efforts at mapping fire intervals across land­
scapes have involved expert systems that assign ag­
gregated point estimates of fire frequency (e.g., from 
fire-scarred trees) to mapped vegetation types (Barrett 
et al. 1991, Brown et al. 1994, Swetnam and Baisan 
1996). Uncertainties and biases that result from op­
portunistic sampling and fires that fail to scar trees limit 
the utility of some point-based data for extrapolating 
results over broad areas or entire vegetation types (Bak­
er and Ehle 2001). There are a few recent, notable 
exceptions to this heuristic method for mapping land-
scape-scale fire history using point samples (McKenzie 
et al. 2000, Niklasson and Granström 2000, Heyerdahl 
et al. 2001, Falk 2003). Area frequencies or rotation 
periods are an expression of fire interval for a specific 
area and incorporate observed or reconstructed spatial 
patterns of fires. Fire rotation periods are usually es­
timated using stand age analysis (Johnson 1992, Agee 
1993), remote sensing (Minnich 1983, Chou and Min­
nich 1990), or archival fire occurrence databases 
(McKelvey and Busse 1996, Rollins et al. 2001). The 
accuracy of mapped rotation periods is limited by the 
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difficulty of reconstructing old fire perimeters; the qual­
ity, extent, and difficulty of analyzing remotely sensed 
data; and the spatial and temporal precision and ac­
curacy of fire occurrence databases (Morgan et al. 
2001, Rollins et al. 2001). 

In order to make inferences about how repeated fires 
affect ecosystems, it is important to know about ‘‘fire 
severity’’: the relative effects of an individual fire on 
an ecosystem. Fire severity has been evaluated in terms 
of a myriad of fire effects, including post-fire change 
in vegetation, soils, or hydrology (Wells et al. 1979, 
Ryan and Noste 1985, Lenihan et al. 1998, Robichaud 
2000). Direct effects of fire severity include fuel con­
sumption, crown scorch, soil heating, and bole charring 
(Reinhardt et al. 1997). The indirect effects of fire se­
verity include tree mortality, change in landscape com­
position, and change in forest structure. These effects 
are influenced by a host of external factors, such as 
antecedent plant stresses, topography, soil properties, 
and disturbance history. In most cases, fire severity is 
quantified as the degree of vegetation mortality after a 
wildland fire (Agee 1993). For example, nonlethal fires 
burn in surface fuels without killing the overstory; 
>70% of the stand basal area and/or >90% of the 
overstory canopy cover remain after the fire (Morgan 
et al. 1996). Stand-replacing burns kill the majority of 
overstory vegetation and include lethal surface fires 
and active crown fires. In stand-replacement fires, 
<20% of the stand basal area and �10% of the canopy 
cover of overstory vegetation remain after the fire 
(Morgan et al. 1996). Mixed-severity fires include com­
binations of nonlethal and stand-replacement fires 
mixed in space and time. Passive crown fires (i.e., oc­
casional torching of individual or groups of trees) and 
underburns are common in mixed severity burns. Typ­
ically, mixed-severity fire regimes are used to describe 
areas that experience fires of different severities over 
time (e.g., a stand-replacement fire followed by a non­
lethal fire; Agee 1993, Morgan et al. 1996). 

Most approaches for mapping fire severity after wild-
land fires use remotely sensed imagery (e.g., aerial pho­
tographs or satellite imagery) to assess vegetation mor­
tality or landscape effects resulting from the hetero­
geneity of fire patterns (White et al. 1996, Medler and 
Yool 1997; C. H. Key and N. C. Benson, unpublished 
manuscript [‘‘The normalized burn ratio (NBR)’’; 
available online]2). Mapping potential fire severity is 
more difficult, as it requires spatially explicit maps of 
weather and fuels (Burgan 1996, Bradshaw and An­
drews 1997, Andrews and Williams 1998). Many mod­
els of potential fire severity involve coarse classifica­
tions of fire environment (e.g., fuel characteristics, 
weather, and topography), characteristics (e.g., igni­
tion, spread, intensity, and extinction), and potential 
effects of fire (Bradshaw and Andrews 1997, Andrews 
and Williams 1998, Andrews and Queen 2001). Data 
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quality, methods for spatially extrapolating data from 
networks of weather stations, and the low spatial res­
olution of satellite imagery for distinguishing fuel char­
acteristics have limited efforts to map potential fire 
severity for fire management or ecological applications 
(e.g., fuels mitigation or ecosystem restoration; An­
drews and Queen 2001). Together, mapped fire interval 
and potential fire severity represent an integration of 
factors that determine wildland fire regimes. 

In this paper, we describe an approach that integrates 
extensive ecological field sampling, remote sensing, 
ecosystem simulation, and biophysical gradient mod­
eling to map fuels and fire regimes across a large (5830 
km2) study area in northwestern Montana, USA. Our 
objectives are to evaluate the effectiveness of using 
indirect, direct, resource, and functional gradient mod­
eling (Austin and Smith 1989, Müller 1998) along with 
a variety of multivariate statistical techniques for map­
ping fuel load (in kilograms per square meter), fuel 
model (Anderson 1982), fire interval (years), and po­
tential fire severity (nonlethal, mixed, and stand re­
placement). Direct gradients, such as temperature and 
humidity, have direct physiological impact but are not 
‘‘consumed,’’ by vegetation (Austin and Smith 1989). 
On the other hand, indirect gradients such as slope, 
aspect, and elevation have no direct physiological in­
fluence on plant dynamics (Austin and Smith 1989). 
The energy and matter used or consumed by plants, 
such as light, water, and nutrients, define resource gra­
dients. Functional gradients describe the response of 
the biota to indirect, direct, and resource gradient types 
(Müller 1998). Included in this gradient category would 
be biomass and leaf area index (Müller 1998). The main 
strengths of our mapping approach include: (1) a stan­
dardized, repeatable method for sampling and database 
development for fuel and fire regime mapping; (2) a 
combination of remote sensing, ecosystem simulation, 
and gradient modeling to create predictive landscape 
models of fuels and fire regimes; (3) a robust, straight­
forward, statistical approach and accuracy assessment; 
and (4) the use of indirect, direct, resource, and func­
tional gradient analysis for mapping fuels and fire re­
gimes. 

METHODS 

Study area 

The 5830-km2 Kootenai River Basin (KRB) in north­
western Montana is bounded by Canada to the north, 
the Whitefish Range to the east, the Yaak River wa­
tershed to the west, and the Clark Fork River watershed 
to the south (Fig. 1). Climate is mostly modified mar­
itime with mild, wet winters and warm, dry summers 
(Finklin 1987). The study area is a very productive 
northern Rocky Mountain landscape containing west­
ern hemlock (Tsuga heterophylla) and western red ce­
dar (Thuja plicata) at low elevations on moist to wet 
sites (northerly aspects and stream bottoms). Mixed 
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FIG. 1. The 5830-km2 Kootenai River Basin study area in northwestern Montana, USA. 

conifer forests of Douglas-fir (Pseudotsuga menziesii), 
western larch (Larix occidentalis), lodgepole pine (Pi-
nus contorta), grand fir (Abies grandis) and, to some 
extent, western white pine (Pinus monticola) dominate 
the productive midelevation zones. Lower subalpine 
areas usually consist of subalpine fir (Abies lasiocar­
pa), spruce (Picea engelmannii and Picea glauca), 
mountain hemlock (Tsuga mertensiana), and lodgepole 
pine. Upper subalpine forests are mostly whitebark pine 
(Pinus albicaulis), subalpine fir, spruce, and small 
amounts of alpine larch (Larix lyalli). Permanent shrub 
and herblands are present at the highest elevations 
(>2000 m). A great portion of forested lands (�40%) 
in the Kootenai study area has been logged in the recent 
past (1950 to the present). Historically, fires were most 
frequent in dry valley bottoms in the northeastern half 
of the study area characterized by mixed Douglas-fir/ 
ponderosa pine forests (Leavell 2000). Fires were least 
frequent in low, mesic forests comprised of western red 
cedar and western hemlock in the western portion of 
the KRB and high-elevation lodgepole pine/subalpine 
fir/spruce forests in the Cabinet and Yaak Mountains 
(Leavell 2000). Large, stand-replacement fires oc­
curred infrequently in the KRB prior to European set­
tlement (Arno 1980). 

Sampling methods 

A hierarchically structured, relevé-based sampling 
design was developed to inventory important ecosys­
tem characteristics across the study area (Jensen et al. 
1993; Fig. 2). Replicated, systematic sampling tech­

niques were not employed in this study because the 
objective was to characterize ecological gradients for 
mapping purposes rather than to quantitatively describe 
plant composition for comparison or monitoring pur­
poses. The field database was developed for five main 
objectives, (1) to serve as reference data for the clas­
sification of satellite imagery, (2) to provide initiali­
zation and parameterization data for simulation models, 
(3) to represent direct measurements of predictor var­
iables along a range of environmental gradients, (4) to 
serve as response variables in predictive landscape 
models, and (5) to provide reference data for accuracy 
assessment of input data layers and resulting maps. 
Detailed description of this hierarchical sampling strat­
egy may be found in Keane et al. (2002b). 

Sampling locations were based on distributions of 
ecosystem processes across the KRB at multiple spatial 
scales (Gillison and Brewer 1985; Fig. 2). Landscape 
composition and function were represented using a set 
of environmental surrogates (elevation, mean annual 
precipitation, mean annual temperature, existing veg­
etation, and habitat type) mapped prior to sampling and 
easily identified in the field. Spatial data describing 
these surrogates were created using ecosystem simu­
lation, GIS modeling, and expert systems (Quigley et 
al. 1996). We assumed that the surrogate variables se­
lected for landscape stratification in this study would 
adequately represent the myriad of other ecological 
processes (e.g., carbon budget, hydrological cycle, ni­
trogen cycle) that potentially influence the spatial dis­
tribution of fuels and fire regimes. 
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FIG. 2. Levels in the hierarchical sampling stratification used along biophysical gradients in the Kootenai River Basin. 
Fourth-code and sixth-code refer to Hydrologic Unit Codes, a nested classification of watersheds and subbasins. Sixth-code 
watersheds are nested within fourth-code watersheds. Subbasins were selected for sampling based on climate and physiography 
data from the Interior Columbia River Basin Ecosystem Management project. Plot polygons were delineated using aerial 
photography, and matrix worksheets were used to assure that plots represented the variability within subbasins. 
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The KRB was divided into ‘‘subbasins’’ based on 
watersheds delineated at the sixth-code level (Fig. 2). 
Fourth-code and sixth-code refer to Hydrologic Unit 
Codes, a nested classification of watersheds and sub-
basins (Quigley et al. 1996). Sixth-code watersheds are 
nested within fourth-code watersheds. Subbasins were 
selected for sampling based on climate, physiography, 
and accessibility. Mean annual precipitation and tem­
perature maps (1-km2 resolution) represented climate 
for determining the subbasins to sample (Quigley et al. 
1996; Fig. 3). Physiography was mapped using regional 
delineations of subsections (Bailey 1995), land type 
associations (J. A. Nesser and G. L. Ford, unpublished 
manuscript), and STATSGO soil data layers (Soil Con­
servation Service 1991). Accessibility was assessed 
from digital road and trail data obtained from the Koo­
tenai National Forest Headquarters (Libby, Montana, 
USA). Combinations of climate and physiographic data 
served as surrogates for approximating the distribution 
of ecosystem processes related to landscape compo­
sition, structure, and function (Booth et al. 1989, Ste­
phenson 1998). Twelve subbasins were selected for 
sampling based on these criteria (Fig. 2). 

The next level in the hierarchical sampling scheme 
was the delineation of ‘‘plot polygons’’ along gradsects 
within subbasins. ‘‘Gradsects’’ are transects that tra­
verse diverse environmental conditions (Gillison and 
Brewer 1985, Bourgeron et al. 1994; Fig. 2). Plot poly­
gons, defined as areas with homogeneous ecological 
conditions (Fig. 2), were selected to represent impor­
tant ecosystem processes (e.g., productivity) within the 
selected subbasins, and they guided the process of plot 
location in the field. Aerial photos, digital orthophoto 
quadrangles, and 7.5-minute topographical maps were 
used to detect areas of similar elevation, aspect, ex­
isting vegetation, and structural stage along each grad-
sect within the subbasins selected for sampling. Matrix 
worksheets and field maps of sample plots by elevation, 
aspect class, existing vegetation, and structural stage 
were used to balance plot polygon sample locations 
across major biophysical and disturbance gradients 
within each sampled subbasin. 

Georeferenced ‘‘macroplots,’’ the finest sampling 
units, were established within each delineated plot 
polygon to evaluate stand characteristics (Fig. 2). It 
was assumed that ecological conditions within a ma­
croplot were representative of ecological conditions of 
the entire plot polygon (Mueller-Dombois and Ellen-
burg 1974). These circular, 0.04-ha macroplots were 
established :50 m from any edge that represented a 
distinct boundary between cover types or structural 
stages. Modified and standardized ECODATA methods 
were used to sample ecological characteristics within 
the macroplot. ECODATA consists of a wide variety 
of sampling methods, plot forms, databases, and anal­
ysis programs that may be integrated to design specific 
inventory and analysis application (Keane et al. 1990, 
Jensen et al. 1993). 

Details of the sampling procedures are presented in 
the ECODATA handbook (Keane et al. 1990, Jensen 
et al. 1993) and only an overview will be discussed 
here (Table 1). Variables measured at each plot included 
elevation, aspect, slope, soil characteristics, and habitat 
type (Pfister et al. 1977). Geographical position was 
recorded using a global positioning system. Cover and 
height of all vascular and nonvascular (mosses and li­
chens) plant species were estimated using plant com­
position methods (Keane et al. 1990, Jensen et al. 
1993). Fuels were described using the ECODATA pro­
cedures recording fuel loadings, Anderson fuel model 
(Anderson 1982), and live fuel, dead fuel, duff, and 
litter depths. Ecophysiological measurements were tak­
en using specialized methods developed for this study. 
These data included leaf area index, leaf longevity by 
tree species, soil water holding capacity, and fire re­
gime classification. Eight crews of two people each 
collected data on 372 plots during four 10-day field 
campaigns. Measurements requiring extensive exper­
tise such as fire regime and soil characterization were 
performed by two highly trained people to ensure con­
sistency in estimations. 

ECODATA disturbance history methods (Keane et 
al. 1990, Jensen et al. 1993) were used to estimate fire 
interval for three general fire severity classes: nonlethal 
surface fire, mixed-severity fire, and stand-replacement 
fire. An experienced fire ecologist determined fire in­
tervals at each plot to insure consistency of estimations. 
Fire intervals were estimated for each plot based on 
age structure and other historical evidence of fire (e.g., 
fire scars, charred woody debris, etc.). Fire intervals 
were estimated for nonlethal fire regimes by searching 
the plot polygon and surrounding areas for fire scarred 
trees. Where available, fire scars were sampled using 
a chain saw and fire interval estimated using ring counts 
(Arno and Sneck 1977). For areas with mixed-severity 
fire regimes, fire return intervals were based on age 
structure within each stand. Fire intervals for both 
mixed-severity and stand-replacement fire regimes 
were estimated by evaluating age differences between 
tree cohorts using increment cores and tree-ring counts 
(Arno and Sneck 1977). The period of record for these 
estimates varied depending on disturbance or land use 
history of each plot. In many cases, previous distur­
bances or land use practices had consumed all but the 
most recent evidence of past fires. In these cases, fire 
intervals were estimated based on evidence of histor­
ical fire on stump surfaces, stand successional status, 
tree ages in adjacent stands, and nearby evidence of 
past fires. Estimated fire intervals were assumed to rep­
resent fire regimes in the study area over the last 100– 
400 years. 

Spatial and ECODATA field databases 

Predictive landscape modeling requires high quality 
spatial data to serve as predictor variables over the 
entire study area (Franklin 1995). For this study, a GIS 
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FIG. 3. Panel A: Climate data used for selecting subbasins for sampling. Colors represent different permutations of mean 
annual temperature and precipitation. Panel B: Landscape polygons used for extrapolating simulation output across the entire 
Kootenai River Basin. Classes were based on cluster analysis of plot data using percent cover of dominant tree species. 
Developed areas, snow and ice, and areas covered in cloud were removed from consideration and masked from the final 
maps. Polygons were delineated using fuzzy classification techniques. 
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TABLE 1. List of measured, summarized, and simulated data in the ECODATA field database. 

Data level Database name	 Description Reliability 

Field data	 location linkage 
general data 
disturbance history 
plant composition 
downed woody 
tree data 
disease and insects 
optional data 

Summarized data fuels 
tree and stand data 

Parameter data GMRS-BGC parameters 

BGC initialization WX­
GMRS initialization 

Simulated data	 GMRS-BGC output file 
WX-GMRS output file 

geographical information 
general site and vegetation information 
record of all disturbance events 
species cover and height by size class 
fuel information 
individual tree measurements 
insect and pathogen information 
ecosystem and biophysical information 
computed fuel loadings 
computed stand and tree characteristics 
ecophysiological parameters for Gradient Modeling 

Remote Sensing–Biological Geochemical Cycles 
(GMRS-BGC) 

initializations for GMRS-BGC inputs and parame­
ters for Weather–Gradient Modeling Remote 
Sensing (WX-GMRS) program 

mean annual output from GMRS-BGC 
summarized simulated weather from WX-GRMS 

highest 

highest 

moderate 

lowest 

Notes: Information reliability is a qualitative assessment based on how far the data are removed from measured data. 
GMRS-BGC and WX-GMRS are mechanistic biogeochemical and weather models used for mapping direct and resource 
gradients. 

containing 38 data layers describing physiographic, 
spectral, weather, and ecophysiological gradients was 
compiled to serve as landscape-scale variables in sta­
tistical models predicting fuels and fire regimes over 
the KRB (Table 2). These 38 variables were selected 
to represent important ecological gradients that either 
influence or are affected by different fuel assemblages 
and fire regimes based on a preliminary analysis of the 
field data. Examples include the effects of aspect (az­
imuth) and slope (percentage) because they relate to 
the transfer of heat energy from flaming fronts, and 
precipitation and temperature effects on fuel assem­
blages and antecedent moistures. Spectral gradients can 
provide information about the biomass available for 
combustion. Each spatial data layer in this study was 
compiled as an Arc/Info grid in the UTM projection 
(zone 11), using the NAD1927 datum (Arc/Info version 
7.2.2, Environmental Systems Research Institute, Red-
lands, California, USA). 

The physiographic gradient layers (Table 2) of ele­
vation (in meters), aspect (azimuth), slope (percent­
age), profile curvature (curvature along the direction 
of the slope), and planform curvature (curvature per­
pendicular to the direction of the slope) were derived 
from Digital Elevation Models (DEMs) obtained from 
the National Elevation Database (available online).3 

Soil depth and soil texture data (percentages of sand, 
silt, and clay used in simulation modeling) were de­
rived from field data, DEMs, STATSGO soil data, and 
hydrological modeling (Beven and Kirkby 1979, Soil 
Conservation Service 1991, Zheng et al. 1996). 

We used Landsat-Thematic Mapper 5 (TM5) satellite 
imagery obtained from the Earth Resources Observa­
tion Systems (EROS) Data Center in August of 1995 
to represent spectral gradients in the Kootenai River 

Basin in two ways (Table 2). First, the TM5 scene was 
used to derive raw reflectance, spectral transforma­
tions, and ancillary parameters as spatial predictor var­
iables for mapping fuels and fire regimes. At-sensor 
reflectance (REFLC1-REFLC7), spectral principle 
components (PCA1, PCA2, and PCA3), Kauth-Thomas 
transformations (BRIGHT, GREEN, WET), Modified 
Normalized Difference Vegetation Index (MNDVI), 
and Leaf Area Index (LAI) were derived from the im­
agery and used as predictor variables in models of fuels 
and fire regime (Kauth and Thomas 1976, Markham 
and Barker 1986, Nemani et al. 1993). 

The TM5 imagery was used to delineate ‘‘landscape 
polygons,’’ an additional landscape unit that was used 
to spatially extrapolate many mechanistically simulated 
weather and biogeochemical variables across the entire 
study area (Fig. 3). In this regard, landscape polygons 
represented a simulation unit, rather than a sampling 
unit (plot polygons). There is one-to-one correspon­
dence between macroplots and plot polygons and one­
to-many correspondence between macroplots and land­
scape polygons. To delineate landscape polygons, ma­
croplots were clustered into nine ecologically distinct 
classes (Fig. 3). Macroplots representing each class 
were used as a spectral signature database, along with 
the satellite imagery, elevation, and aspect in a super­
vised classification routine based on fuzzy algorithms 
within the Earth Resource Data Analysis System (ER­
DAS) Imagine image processing software (version 8.4, 
Earth Resource Data Analysis System, Atlanta, Geor­
gia, USA; Fahsi et al. 2000; Fig. 3). Accuracy for the 
resultant landscape polygon classification for extrap­
olation of simulation results was 67% (K̂ = 0.56). 

Three mechanistic ecosystem models were used to 
simulate weather and ecophysiological gradients for 

3 URL: (http://edcnts12.cr.usgs.gov/ned/default.asp) each landscape polygon over the entire KRB landscape. 

http://edcnts12.cr.usgs.gov/ned/default.asp
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TABLE 2. Spatial data layers representing physiographic, spectral, weather, and biogeochemical variables used to map fuels 
and fire regimes over the entire Kootenai River Basin. 

Layer type 
Layer name Description Source 

Physiographic 
DEM 
SLOPE 
ASPECT 
CURVE 
PLAN_CURVE 
PSAND* 
PSILT* 
PCLAY* 
SDEPTH 

Spectral 
REFLC1 
REFLC2 
REFLC3 
REFLC4 
REFLC5 
REFLC7 
PCA1 
PCA2 
PCA3 
BRIGHT 
GREEN 
WET 
LAI 
MNDVI 

Weather 
PET 
PPT 
SRAD 
TAVE 
TDEW 
TMIN 
TMAX 
TSOIL 
VPD 

Ecophysiological 
NPP 
NEP 
ER 
AR 
MR 
OUTFL 

digital elevation model
 
slope, in percent, derived from DEM
 
direction of exposure in azimuths
 
relative concavity/convexity
 
curvature in the direction of slope
 
percent of sand in soil
 
percent of silt in soil
 
percent of clay in soil
 
depth to bedrock
 

TM5 At-sensor reflectance, band 1
 
TM5 At-sensor reflectance, band 2
 
TM5 At-sensor reflectance, band 3
 
TM5 At-sensor reflectance, band 4
 
TM5 At-sensor reflectance, band 5
 
TM5 At-sensor reflectance, band 7
 
principal component #1 of TM5 bands
 
principal component #2 of TM5 bands
 
principal component #3 of TM5 bands
 
Kauth-Thomas transform of TM5 bands
 
Kauth-Thomas transform of TM5 bands
 
Kauth-Thomas transform of TM5 bands
 
leaf area index (m2/m2)
 
modified normalized difference vegetation index
 

mean annual potential evapotranspiration (m)
 
mean annual precipitation (cm/yr)
 
mean annual daily solar radiation (kJ m-2 day-1)
 
mean annual average temp. (°C)
 
mean annual dewpoint temp. (°C)
 
mean annual minimum temp. (°C)
 
mean annual maximum temp. (°C)
 
mean annual soil temp. (°C)
 
mean annual vapor pressure deficit (mbar)
 

net primary productivity (kg C/m2)
 
net ecosystem production (kg C/m2)
 
ecosystem respiration (kg C/m2)
 
autotrophic respiration (kg C/m2)
 
maintenance respiration (kg C/m2)
 
outflow (kg H2O/m2)
 

USGS†
 
USGS†
 
USGS†
 
derived‡
 
derived‡
 
Soil Conservation Service (1991)
 
Soil Conservation Service (1991)
 
Soil Conservation Service (1991)
 
derived (Zheng et al. 1996)
 

derived (Markham and Barker 1986)
 
derived (Markham and Barker 1986)
 
derived (Markham and Barker 1986)
 
derived (Markham and Barker 1986)
 
derived (Markham and Barker 1986)
 
derived (Markham and Barker 1986)
 
derived§
 
derived§
 
derived§
 
derived (Kauth and Thomas 1976)
 
derived (Kauth and Thomas 1976)
 
derived (Kauth and Thomas 1976)
 
derived (Nemani et al. 1993)
 
derived (Nemani et al. 1993)
 

derived (WX-GMRS)
 
derived (WX-GMRS)
 
derived (WX-GMRS)
 
derived (WX-GMRS)
 
derived (WX-GMRS)
 
derived (WX-GMRS)
 
derived (WX-GMRS)
 
derived (WX-GMRS)
 
derived (WX-GMRS)
 

derived (GMRS-BGC)
 
derived (GMRS-BGC)
 
derived (GMRS-BGC)
 
derived (GMRS-BGC)
 
derived (GMRS-BGC)
 
derived (GMRS-BGC)
 

Notes: Data were either obtained from existing sources or derived using GIS, image processing software, or ecosystem 
simulation programs. WX-GMRS indicates Weather–Gradient Modeling Remote Sensing, and GMRS-BGC indicates Gradient 
Modeling Remote Sensing–Biological Geochemical Cycles. 

† Available online, URL: (http://edcnts12.cr.usgs.gov/ned/default.asp). 
‡ Derived using Arc/Info, version 7.2.2 (Environmental Systems Research Institute, Redlands, California, USA).
 
§ Derived using Imagine, version 8.4 (Earth Resource Data Analysis System, Atlanta, Georgia, USA).
 

These models were: DAYMET (Thornton et al. 1997), 
WX-GMRS (Weather–Gradient Modeling Remote 
Sensing; Keane et al. 2002b), and GMRS-BGC (Gra­
dient Modeling Remote Sensing–Biological Geochem­
ical Cycles; Running and Hunt 1993, Keane et al. 
2002b). Each simulation model was parameterized us­
ing data representing site characteristics and ecophys­
iological rates and constants, the majority of which 
were taken directly from the ECODATA field database. 
Model parameters that were not sampled during the 
field campaigns were taken from the literature or ex­
isting databases (see Keane et al. 1996). Each landscape 

polygon was assigned a parameter list for initialization 
of each simulation model (DAYMET, WX-GMRS, and 
GMRS-BGC). 

Weather was computed for each landscape polygon 
using the DAYMET program developed by Thornton 
et al. (1997). Daily weather values of maximum and 
minimum temperature, relative humidity, precipitation, 
and solar radiation (TMAX, TMIN, RH, precipitation, 
and SRAD) are calculated across each study area using 
physiographic relationships and adiabatic lapse rates to 
extrapolate 20 years of weather data from eight weather 
stations located in and around the study area. Outputs 

http://edcnts12.cr.usgs.gov/ned/default.asp
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from DAYMET were used as input for WX-GMRS and 
GMRS-BGC to create other spatial databases. WX­
GMRS was used to summarize daily weather sequences 
computed by DAYMET into integrated measures of 
local weather and climate (e.g., mean temperature, pre­
cipitation, and vapor pressure deficit) for each land­
scape polygon for the duration of the fire season in 
northwestern Montana (May–October). WX-GMRS 
summaries represent potentially useful predictive di­
rect gradients, such as potential evapotranspiration, soil 
water potential, and vapor pressure deficit. 

Important ecophysiological gradients were simulated 
using GMRS-BGC, a modification of BIOME-BGC, 
developed by Running and Hunt (1993) and Thornton 
(1998). GMRS-BGC simulates fluxes of carbon, nitro­
gen, and water at the stand level using mechanistic 
biogeochemical functions. GMRS-BGC was executed 
for 250–350 years to allow conditions in the model to 
equilibrate with input weather data (cycled every 20 
years) and 100 more years to obtain mean annual out­
put. Output from WX-GMRS (May–October) and 
GMRS-BGC (entire year) were summarized for each 
landscape polygon, then compiled as separate spatial 
data layers (raster grids). These layers served as pre­
dictive variables in the process of mapping fuels and 
fire regimes. For example, DAYMET calculated daily 
precipitation, temperature, and relative humidity for 
each landscape polygon from 20 years of daily weather 
data. WX-GMRS summarized these daily data to values 
of precipitation, minimum and maximum temperature, 
and relative humidity for the May–October fire season. 
In another example, mean annual net primary produc­
tivity for each landscape polygon was calculated from 
GMRS-BGC using input data derived from the ECO­
DATA field database and DAYMET weather simula­
tions for each KBR landscape polygon. These simu­
lated variables represent important landscape-scale 
gradients used to predict spatial landscape character­
istics across each study area. 

A hierarchically structured database was designed to 
organize the complex information and different types 
of data used to map fuels and fire regimes in this study 
(Tables 1 and 2). Data collected in the field occupy the 
top of the database structure, and (1) are actual mea­
surements of ecosystem characteristics, (2) represent 
the most accurate and defensible data in the database, 
and (3) provide the foundation of the predictive land­
scape modeling of fuels and fire regimes. Summaries 
of the ECODATA field database occupy the next level 
of the database; these are data generated from field 
measurements that summarize characteristics of each 
macroplot. For example, fuel loads (in kilograms per 
square meter) are synthesized from the downed woody 
inventories stored in the raw ECODATA field database. 
Simulation model input and parameter data occupy the 
third level in the database structure. These data were 
computed from the field and from summary databases 
to quantify the input parameters and initialization files 

required by the set of three simulation models described 
previously. The last and lowest level in the database 
contains simulated spatial databases, which are sum­
marized outputs from these three simulation models. 

Predictive gradient modeling 

Our approach to mapping fuels and fire regimes con­
sisted of multiple integrated analyses and data sources 
(Figs. 3 and 4). Fuel and fire regime information from 
the ECODATA field database (macroplots) provided 
information to be used as dependent or response var­
iables. Values from each of the 38 spatial predictor 
variables (Table 2) were extracted for each macroplot 
using a GIS; and, along with measured variables for 
historical mean fire interval, general fire severity, fuel 
loads, and fuel models, these data were compiled as a 
separate model-building database. 

To account for the effect of different units among 
predictor variables and to facilitate extrapolation across 
the study area landscape, we standardized macroplot 
values for 38 spatial predictor variables to Z scores 
with respect to the population mean and standard de­
viation. This procedure removed the weighting that re­
sults from differences in units and magnitudes between 
predictor variables (Johnson 1998). Preliminary explo­
ration of the data with classification and regression 
trees (CART; Breiman et al. 1984), scatterplots, and 
histograms provided insights into the correlation and 
covariance structure. This was helpful for identifying 
erroneous values, statistical outliers, influential points, 
and potential relationships. After removing 12 plots 
due to erroneous data and grouping plots into fire in­
terval and fuel load categories, the model database was 
partitioned into two parts: a model development set 
and an independent validation set (Johnson 1998). We 
used 75% of the data for model development and 25% 
of the data as a validation set for evaluating model 
performance and determining the degree to which mod­
el predictions could be extrapolated over the entire Ko­
otenai River Basin. 

We used general linear models (GLM), discriminant 
analysis, CART, and logistic regression to map fuel 
loads, fuel models, historical fire interval, and fire se­
verity (Table 3). A GLM is a flexible statistical tech­
nique for predicting continuous response (dependent) 
variables based on a collection of continuous predictor 
(independent) variables (Johnson 1998). Discriminant 
analysis classifies records into discrete groups by de­
veloping a quadratic function of the predictor variables 
that captures the essential differences between groups 
(Johnson 1998). The CART procedure, used as an an­
alog for regression, begins with the entire data set, 
proceeds by sorting all of the n cases for each predictor, 
and examines all n - 1 ways to split the data in two. 
For every possible split of each predictor variable, the 
within-cluster sum of squares about the mean of the 
cluster on the response variable is calculated. The pre­
dictor defines a split at a point that yields the smallest 
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FIG. 4. Overview of the approach used to map fuels and fire regimes. Existing spatial data were used to stratify the study 
area for field sampling. An extensive field database served as training data for image processing and was used to derive 
spatial data layers and to parameterize ecosystem models; it also was the source of response variables for predictive landscape 
models. Discriminant analysis along with 38 predictor variables was used to map fuels and fire regimes for the Kootenai 
River Basin. Accuracy was assessed independently using a 25% holdout data set. 

overall within-cluster sum of squares (Breiman et al. archical cluster analysis to identify natural groupings 
1984). Logistic regression relates a binomial response and assign classes for fuel loads and fire interval. We 
variable to several predictor variables that can be either then analyzed these variables using discriminant (dis­
continuous or discrete (Christensen 1997). Logistic re- crete response), CART (discrete response), and logistic 
gression transforms the response variable into a logit regression models. We created a separate logistic model 
variable (the natural log of the odds of the response for each fuel model. Single logistic models (binomial 
occurring or not) and applies maximum likelihood es- response) were applied to fuel loads (low or high), fire 
timation. In this way, logistic regression estimates the interval (short or long), and fire severity (nonlethal and 
probability of specific events occurring. stand replacement; Table 3). We created two sets of 

Since fire interval and fuel loads were recorded at models for each statistical technique to evaluate the 
each plot as continuous variables, they were the only degree to which the incorporation of direct, resource, 
two response variables used in GLM. We used hier- and functional gradients improved map accuracy over 

TABLE 3. Mapped components of fuels and fire regimes, along with corresponding statistical methods, response variable 
classes, and important variables for developing each map component. 

Statistical Significant 
Map layer method Response type variables 

Fuel loads (kg/m2)	 GLM 
discriminant 
CART 
logistic 

Anderson fuel model	 discriminant 
CART 
logistic 

Fire interval (yr)	 GLM 
discriminant 
CART 
logistic 

Fire severity	 discriminant 
CART 
logistic 

continuous
 
discrete (L, low; M, medium; H, high)
 
discrete (L, low; M, medium; H, high)
 
binomial (L, low; H, high)
 

discrete (5, 8, 10)
 
discrete (5, 8, 10)
 
binomial (separate model for each)
 

continuous
 
discrete (short, medium, long)
 
discrete (short, medium, long)
 
binomial (short, long)
 

discrete (nonlethal, mixed, stand replacement)
 
discrete (nonlethal, mixed, stand replacement)
 
binomial (nonlethal, stand replacement)
 

NDVI GREEN, SRAD, 
OUTFL, PET 

REFLC4, TDEW, 
TMIN, ELEV 

OUTFL, PPT, REFLC4, 
PCLAY 

PPT, CURVE, OUTFL, 
ELEV 

Note: Anderson fuel models 5, 8, and 10 indicated different predicted fire behavior characteristics (Anderson 1982). 
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TABLE 4. Independently evaluated accuracies for models of fuels and fire regimes based purely on indirect variables 
(physiography) and models based on the entire database. 

Accuracy 

Models based on physiography (indirect) variables 

Discriminant CART Logistic GLM 

Map layer % K̂ % K̂ % K̂ R2 P 

Fuel loads 34.5 0 52.0 0.20 62.6 0.28 0.07 <0.01 
Fuel model 43.4 0.44 53.9 0.27 64.6 0.32 † † 
Fire interval 57.9 0.34 59.8 0.35 70.1 0.24 0.11 <0.01 
Fire severity 52.9 0.26 61.7 0.41 70.2 0.40 † † 

Notes: Maps based on discriminant, CART, and logistic regression were evaluated based on overall accuracy and the K̂ 
statistic. Accuracy for maps based on GLMs were evaluated based on R2 and P values. In all cases, accuracy assessment 
was based on a 25% random holdout database. Overall accuracy for discriminant, CART, and logistic analyses is computed 
as the percentage of total observations correctly classified (class 1 as class 1, class 2 as class 2, etc.). See Methods: Accuracy 
assessment for more information. 

† Accuracy not evaluated for this layer using this method. 

models based purely on indirect gradients. Our hy­
pothesis was that models incorporating these gradients 
representing ecosystem processes and biophysical set­
tings would improve mapping accuracy over models 
based purely on topography. 

Accuracy assessment 

We assessed model accuracy by classifying the val­
idation database with statistical functions developed 
using the model development database. Classification 
accuracy was quantified for each spatial data layer with 
two measures: the overall accuracy and the Kappa sta­
tistic (K̂ ), which measures the improvement in classi­
fication over that of pure chance by accounting for 
omission and commission error (Congalton and Green 
1998). Overall accuracy is computed as the sum of the 
number of observations correctly classified (class 1 as 
class 1, class 2 as class 2, etc.) divided by the total 
number of observations (Story and Congalton 1986). 
This is equivalent to the ‘‘diagonal’’ of a square con­
tingency table matrix divided by the total number of 
observations described in that contingency table (Story 
and Congalton 1986). Overall accuracy does not ac­
count for commission and omission errors (Congalton 
and Green 1998). Thus, it is possible to have a high 
overall accuracy, but also to have a high probability of 
false negatives or false positives. The Kappa statistic 
(K̂ ) incorporates errors of omission and commission in 
classified data. It has been suggested to group contin­
uous data for evaluating accuracy; however, this would 
be counter to our goal of representing fuel loads and 
fire intervals continuously over the landscape. Because 
of a small sample size, McKenzie et al. (2000) eval­
uated how well GLM predicted fire intervals using a 
bootstrap estimate of prediction error. Our model da­
tabase was large; therefore, we evaluated accuracy of 
the continuous models of fire interval and fuel load 
maps by regressing measured and predicted fire fre­
quency values for the validation database. 

RESULTS AND DISCUSSION 

Predictive landscape mapping 

Continuous maps of fuel loads based on GLM had 
low accuracies (Table 4). However, general linear mod­
els predicted continuous fire interval reasonably well 
(Fig. 5). In general, discrete vs. continuous maps have 
more utility for developing management options for 
specific parts of a landscape (Aronoff 1989). Discrete 
ranges of fuel load classes and fire return intervals are 
more reasonable targets for landscape restoration or 
hazard reduction relative to individual, specific values 
of fire interval or fuel load which vary widely at land­
scape scales. This, in addition to expense and time 
constraints, is the main reason fire scars were not cross-
dated. The high temporal precision provided by de­
tailed crossdating was not warranted because it is un­
necessary to treat fire interval as a continuous variable 
for most land and fire management planning. Overall 
accuracies for discrete maps of fuel loadings, fuel mod­
el, fire interval, and fire severity varied from 51% to 
81%, and K̂ varied from 0.20 to 0.54 (Table 4, Fig. 6). 
Fire interval was mapped most accurately. Mean fire 
season precipitation, mean annual outflow (i.e., the 
amount of water available for runoff from a site), near 
infrared reflectance, and clay content in soils were the 
most important variables for discriminating between 
short, medium, and long interval classes. Fuel loadings 
were mapped least accurately (51%) with spectral de­
rivatives, mean annual outflow, and topographic cur­
vature being the most important for discriminating be­
tween areas with high, medium, and low amounts of 
fuel. Overall, accuracies were reasonable although the 
low accuracy of the maps, and the fuel maps in par­
ticular, may limit the utility of our specific approach 
for future applications. Despite low accuracies, the 
work presented in this paper represents a significant 
step in the search for standard methods for mapping 
fuels and fire regimes at high resolutions over broad 
areas. It is important to note that a rigorous accuracy 



87 February 2004 MAPPING FUELS AND FIRE REGIMES 

TABLE 4. Extended. 

Discriminant 

% K̂ 

51.3 
55.1 
63.2 
71.7 

0.28 
0.30 
0.43 
0.52 

Accuracy 

Models based on all variables 

CART 

% K̂ 

Logistic 

% K̂ 

51.4 
56.4 
66.4 
61.7 

0.20 
0.34 
0.44 
0.41 

63.7 
69.2 
80.7 
72.0 

0.28 
0.38 
0.54 
0.44 

R2 

0.12 
† 

0.41 
† 

GLM 

P 

<0.001 
† 

<0.001 
† 

assessment is one of the strengths of our approach. 
Many attempts at mapping fuels and fire regimes lack 
quantitative accuracy assessment; therefore, it is dif­
ficult to evaluate our maps with regard to previous 
research (Morgan et al. 1996, Keane et al. 2001, Mor­
gan et al. 2001). 

FIG. 5. Predicted vs. observed fire intervals (in years). 
General linear models tended to overpredict short intervals 
and underpredict long fire intervals. Panel A is based on all 
predictor variables, and panel B is based solely on physio­
graphic variables; a is the slope of the regression line, and b 
is the y intercept. 

Stratification and sampling strategies emphasized the 
collection of data that represented gradients of land­
scape patterns and ecosystem processes across each of 
these broad study areas. We feel that the main goals of 
the sampling efforts were achieved. A main limitation 
to the relevé approach used in this study was that plot 
locations were subjectively determined at the time of 
sampling. This is at least partially mitigated, however, 
because the study area was stratified twice prior to 
macroplot location using existing spatial biophysical 
data. The effectiveness of this stratification was largely 
based on the availability and quality of pre-existing 
data for the study area. The limited availability of 
broad-scale biophysical data could limit the utility of 
our approach in future applications; however, many 
comprehensive biophysical data sets exist, and more 
are becoming available yearly. 

Overall, each statistical technique performed well for 
mapping fuels and fire regimes; no single statistical 
technique consistently outperformed the others (Table 
4). Many additional statistical techniques have been 
applied to predictive landscape mapping. These include 
general additive models, neural networks, Bayesian 
modeling, and expert systems approaches. However, 
none of these approaches have shown superior mapping 
performance (Franklin 1995). It appears from our anal­
yses that, in future implementations of our approach, 
researchers or landscape managers need not agonize 
over selecting an appropriate statistical technique. 
Rather, they should focus resources and efforts on as­
suring that: (1) field databases are sufficiently repre­
sentative of the landscape; (2) the gradients that com­
prise landscapes are represented by carefully compiled, 
accurate spatial data; and (3) validation data are in­
dependent from the model development database. 

Biophysical gradient modeling 

Derivatives of satellite imagery that represented 
functional gradients (gradients that describe the re­
sponse of the biota to other biophysical gradient types) 
including MNDVI, near infrared reflectance, and 
Kauth-Thomas Greenness, were important predictors 
of fuel loads, fuel model, and fuel moisture (Table 5). 
This indicates that an approach that integrates remote 
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FIG. 6. Fuel model (panel A), fuel load (panel B), fire severity (panel C), and fire interval (panel D) over the entire 
Kootenai River Basin. Panels A, B, and C were based on discriminant analysis and were 55.1%, 51.4%, and 71.7% accurate, 
respectively, based on comparisons with independent field measurements. Panel D (fire interval) is portrayed as a continuous 
variable and was based on a general linear model with R2 = 0.41 and P < 0.001. 

sensing and gradient modeling is a significant improve­
ment over standard remote sensing techniques using 
passive sensors for mapping characteristics of wildland 
fire. Mechanistic ecosystem models were used to spa­
tially simulate weather and biogeochemical processes 
known to govern fuel and fire regime dynamics. The 
empirical/mechanistic DAYMET and WX-GMRS 
models described the spatial distribution of important 
fire weather variables based on a network of weather 
stations arrayed across the KRB at a variety of ele­
vations. Mean fire season precipitation and temperature 
were the most important weather variables for mapping 
fuels and fire regimes. 

A simulation approach characterized subtle changes 
in mean fire season weather conditions that an indirect 
modeling approach may fail to recognize. In an indirect 
approach, latitude and elevation are often used as sur­
rogates representing gradients in precipitation and tem­

perature, which are assumed to change uniformly with 
regard to these variables. In contrast, a simulation ap­
proach based on a large sample of real weather data is 
much more likely to characterize unique weather char­
acteristics of a landscape such as rain shadows or storm 
tracks. The most important biogeochemical variable in 
predictive landscape models was outflow. This indi­
cates that water status is an important resource gradient 
for discriminating fuels and fire regimes across land­
scapes (Clark 1989, Stephenson 1998). Ecosystem res­
piration and net primary productivity were also im­
portant predictors, indicating that fuels and fire regimes 
are directly related to the rates of carbon cycle pro­
cesses (Olsen 1981, Ryan 1991, Price and Rind 1994). 
A simulation approach adds information about direct, 
resource, and functional gradients to predictive mod­
eling of landscape characteristics and, relative to mod­
els based purely on indirect gradients, more accurately 
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TABLE 5. Important physiographic, spectral, weather, and 
biogeochemical variables for mapping fuels and fire re­
gimes. See Table 2 for variable definitions. 

Physio­
graphic Spectral Weather 

Biogeo­
chemical 

ELEV 
SLOPE 
CURVE 
SDEPTH 

REFLC4 
REFLC2 
GREEN 
NDVI 

PPT 
TMAX 
SRAD 
TMIN 

OUTFL 
ER 
AR 
MR 

represents the environmental factors that control land­
scape scale distributions of fuels and fire regimes. 

Overall, the resource gradients precipitation and out­
flow and the functional gradients MNDVI and near-
infrared reflectance (both descriptions of plant bio­
mass) were the most important variables for mapping 
fuels and fire regimes across the Kootenai River Basin. 
It is well known that fuel loads and fire regime char­
acteristics are functions of site water status and pro­
ductivity (Clark 1989, Agee 1993, McKelvey and 
Busse 1996, Stephenson 1998, Li 2000, Turner et al. 
2001). Therefore, accurate spatial data representing 
these direct gradients should be powerful predictors for 
mapping landscape scale fuels and fire regimes. In ad­
dition, and as expected, spectral gradients representing 
biomass were important functional gradients describing 
the spatial distribution of fuels and fire regimes because 
information derived from satellite imagery is directly 
related to vegetation composition and biomass. In fu­
ture mapping efforts, we recommend an ecosystem sim­
ulation approach focused on energy budget, hydrology, 
and carbon cycles. 

Without exception, all predictive landscape models 
were improved by the inclusion of direct, functional, 
and resource gradient variables. Overall accuracy for 
the maps based purely on indirect gradients was lower 
than accuracies for maps based on the full set of pre­
dictive landscape variables (Table 4). This supports our 
assertion that inclusion of predictor variables directly 
related to fuels and fire regimes improves mapping ac­
curacies. We expected that elevation would be less im­
portant than the direct and resource gradients that it 
traditionally represents in indirect gradient modeling. 
This was true in most cases, but elevation was common 
as a secondary or tertiary variable in most models, 
particularly models of fire severity. This is likely due 
to the high accuracy of mapped elevation relative to 
the more moderate accuracy of simulated direct, func­
tional, and resource gradients. Ecosystem simulation 
models have improved over the last decade for appli­
cation from regional to local spatial scales. As simu­
lation models improve, better spatial representation of 
these important direct and functional gradients will be 
possible. We expect that this will improve the accu­
racies of maps of fuels and fire regimes based on bio­
physical gradient modeling. Comparisons of maps 
based on statistical models containing only indirect 

gradients and maps based on models that include direct, 
resource, and functional gradients highlight the im­
portance of variables representing ecosystem processes 
in predicting the spatial distribution of fuels and fire 
regimes. 

Potential vs. existing conditions 

Predictive landscape maps based solely on gradients 
represent potential conditions. Maps that incorporate 
functional gradients (e.g., remotely sensed biomass or 
vegetation structure) help narrow in on existing con­
ditions by incorporating data for realized landscape 
composition, structure, and function. In the maps pre­
sented here, direct, resource, and functional gradients 
for mapping fuels and fire regimes were based on the 
previous 20 years of weather data and derivatives from 
single-date satellite imagery. Fire intervals represented 
existing conditions to the extent that the previous 100– 
400 years represented the stand history that led to the 
existing stand condition. From an ecological perspec­
tive, fire regimes often evoke a much longer time period 
(i.e., thousands of years); however the temporal extent 
of most proxy fire history data (e.g., fire scars and age 
structure) usually only extend back in time for a few 
centuries. Mapped fuels and fire regimes represented 
both existing and potential conditions based on the 
combination of indirect, direct, resource, and function­
al gradient types in our approach. If fire regimes for a 
given period of record are desired in future applications 
of our mapping framework, then it is necessary to limit 
estimates of fire interval to that period of record. For 
example, if a map of pre-20th century conditions is 
desired, then fire history evidence used for fire interval 
estimates should be limited to pre-1900 data. 

The generally low accuracy of maps of fuel loads 
may result from expressions of both existing and po­
tential fuels loads in our final predictive landscape 
models. Large discrepancies between potential and ex­
isting are possible in areas where landscape condition 
has been affected by land use and fire exclusion. Pre­
dictive maps of fuel models were more accurate, prob­
ably because general descriptions of fuel models are 
more static temporally than actual fuel loads. We 
mapped existing and potential fuels together as proof 
of concept for this paper. However, the integrated ap­
proach presented here could easily be modified to map 
purely existing or potential conditions. Existing con­
ditions could be mapped by extracting date-specific 
information about direct, resource, and functional gra­
dients from ecosystem simulations. Potential condi­
tions could be mapped by accumulating time-series 
spectral information from imagery spanning a specific 
period of record to describe a general expression of 
functional gradients for the study area. If maps of pure­
ly potential conditions are desired, predictor variables 
describing functional gradients should be excluded. Se­
ries of maps of potential fuels and fire regimes based 
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on alternative weather scenarios could be produced to 
investigate changes under different climate scenarios. 

Mapping fuels and fire regimes 

Many strategies have been applied to creating maps 
of fire regimes, including classification, simulation, and 
statistical modeling. Classification involves assigning 
a fire regime description based on some expression of 
fire history and different permutations of vegetation, 
topography, and/or climate (e.g., Barrett et al. 1991, 
Brown et al. 1994, Morgan et al. 1996). The simplicity 
of applying the classification strategy to large areas is 
the major strength of the classification approach. Clas­
sification fails to account for the spatial relationships 
between areas with different potentials for burning 
(e.g., ecotones). An additional limitation is that fire 
regimes are sometimes not congruous with vegetation 
classifications. Existing patterns of vegetation integrate 
site characteristics and disturbance interactions, and 
may not adequately represent the patterns of past fires. 

Simulating fire regimes involves models that simu­
late fire behavior and effects over an extended period 
of time. Outputs are summarized to generate maps of 
fire regimes (e.g., Baker 1995, Li 2000). The major 
strength of fire regime simulation is the integration of 
all factors that determine fire regimes into one mod­
eling application. Models may be run many times to 
evaluate a range of possible conditions or to assess 
sensitivity by systematically changing one or more vital 
attributes such as climate. The major drawback to sim­
ulation modeling is that models are often oversimpli­
fications of reality and fail to represent the complex 
ecological processes and landscape patterns that de­
termine fire regimes. For example, fire occurrence and 
spread may not simulate realistic fire patterns because 
of lack of hourly weather or fine-scale fuels data. In 
addition, imbedded succession pathways or competi­
tive hierarchies may fail to accurately represent the 
changes in plant composition and structure after fires. 

Statistical modeling is the most common approach 
to mapping fire regimes. It most often involves the 
summary of fire history databases (e.g., fire scar col­
lections, age structure data, and/or fire atlases), docu­
menting the date and extent of past fires into repre­
sentations of fire interval and severity (Arno 1976, Nik­
lasson and Granström 2000, Heyerdahl et al. 2001, Rol­
lins et al. 2001). This usually involves fitting 
distributions of fire occurrence from a specific area to 
a statistical distribution such as Poisson or Weibull 
(Grissino-Mayer 1999, Reed 2000). This method is spa­
tially explicit; however, uncertainties exist based on 
data quality and the appropriate spatial and temporal 
resolution for ecological inference (Baker and Ehle 
2001, Rollins et al. 2001). Compiling fire history da­
tabases requires a high degree of expertise, and can be 
very expensive. The statistical strategy is simple, ef­
ficient, and the most accurate because it is ultimately 
based on real field data; however, it is less compre­

hensive in capabilities for exploring interactions be­
tween causal factors than simulation modeling. Pre­
dictive models are possible and examples include sto­
chastic simulation (He and Mladenoff 1999) and the 
incorporation of ecosystem process variables as pre­
dictor variables (McKenzie et al. 2000). Fire regime 
mapping based purely on statistics is limited by the 
cost of extensive field sampling, database quality, and 
difficulty of untangling correlations from causality. 

Our fire regime maps are based on an integrated ap­
proach that incorporates field data, remotely sensed 
data, and biophysical modeling. Classifications of fire 
interval and fire severity are based on evaluations of 
stand age and structure at each macroplot. Cost was 
prohibitive in terms of time and money to compile a 
detailed fire history reconstruction for the entire Ko­
otenai River Basin. Classification of fire severity is 
based on an expert opinion of the general fire severity 
for a wildland fire for every macroplot. Maps represent 
potential fire regime characteristics to the extent that 
current stand conditions at each macroplot represent 
the effects of past fires. Although fire regime classifi­
cations are subject to bias based on subjective sampling 
and semiqualitative evaluations of fire interval and fire 
severity, these maps provide an effective means for 
wildland fire managers to evaluate the spatial distri­
bution of fire regimes at broad scales and for specific 
areas. Our approach demonstrates the utility of using 
extensive field inventories along with fire regime clas­
sifications, ecosystem simulation, and a relatively 
straightforward statistical approach to mapping fire re­
gimes with respectable, independently assessed accu­
racies. The process described in this paper provides 
more information than rule-based or expert system ap­
proaches because it is both data driven and incorporates 
direct, functional, and resource gradient modeling. 
However, our approach provides less detailed infor­
mation (e.g., time series of landscape change) than ap­
proaches based purely on simulation modeling (Keane 
et al. 1996, He and Mladenoff 1999). 

Application of maps of fuels and fire regimes in fire 
and land management 

Applications of fuel and fire regime maps in fire 
management are numerous. For example, fuel load or 
fuel model maps could be cross tabulated with potential 
fire behavior, historical condition class, or vegetation 
maps to make strategic decisions about fire suppression 
resources or to prioritize specific areas for ecosystem 
restoration or fuel mitigation. Fire interval maps could 
be compared with maps of recent fires to determine 
appropriate areas for prescribed burning. These data 
may be evaluated individually, as with plans for a spe­
cific prescribed burning operation, or with other data 
as part of a comprehensive landscape assessment, such 
as revisions of a National Forest Plan. Our approach 
provides landscape managers with the best available 
scientific information about existing or potential fuels 
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and fire regimes for addressing current issues in wild-
land fire management. Ecologists and fire managers 
must carefully consider the spatial and temporal con­
text of naturally ignited fires, management-ignited 
fires, and mechanical vegetation treatments to effec­
tively address issues related to managing wildland fire. 
This type of enlightened, ecologically based manage­
ment of wildland fire requires comprehensive maps of 
fuels and fire regimes over broad areas. The science of 
restoration ecology and the practice of ecological res­
toration are evolving rapidly. As restoration efforts in­
crease, spatial information about the status of land­
scapes with regard to their historical conditions are 
important for locating and prioritizing the expenditure 
of a limited amount of resources. 

These spatial inventories are critical for assessing 
the risks to public safety and to ecosystem integrity 
involved with wildland fire in a constantly changing 
landscape. A consistent, standardized approach to da­
tabase development and mapping is requisite for ef­
fective communication and coordination of wildland 
fire management information within and between both 
government and nongovernment institutions. 

Although the mapped fuels and fire regimes pre­
sented in this paper are not ideal, they effectively rep­
resent differences in fuels and fire regimes between 
areas, and the spatial pattern of those relative differ­
ences is of great utility to fire managers and ecologists. 
Our approach allows flexibility in gradient model de­
velopment, the potential for application at multiple 
scales, and the ability to build predictive maps, but 
possibly at the cost of limited implementation. Devel­
opment of the empirical predictive algorithms requires 
expertise in statistical analysis, ecological interrela­
tionships, and database management, so implementa­
tion of this approach in other areas may require spe­
cialized personnel. However, these protocols can be 
easily adjusted or formulated to generate new predic­
tive equations for new areas or new applications, and 
they may be refined and modified as additional field 
data or gradient GIS layers become available and they 
may be easily implemented in standard statistical soft­
ware so that local statistical experts are not needed. 

The need for comprehensive spatial data for fire 
and land management 

A legacy of fire exclusion, land use practices, and 
widespread exotic species invasions has altered fire re­
gimes, fuel loads, and landscape composition, struc­
ture, and function (Pyne 1982, Swetnam and Baisan 
1996, Rollins et al. 2001, Allen et al. 2002). As a result, 
wildfire characteristics have changed significantly from 
historical conditions (U.S. GAO 1999), sometimes with 
catastrophic consequences. Recent examples of this in­
clude the Cerro Grande fire of 2000 that burned over 
235 homes in Los Alamos, New Mexico, and the 2000 
and 2002 fire seasons where nearly 8 million hectares 
burned across the western United States with unprec­

edented suppression expenditures approaching $2 bil­
lion. In response to these conditions, the United States 
Department of Agriculture (USDA) and the United 
States Department of the Interior (USDI) have imple­
mented the National Fire Plan, a long-term program to 
protect communities, ecosystems, and the lives of fire­
fighters and the public. Hardy et al. (2001) developed 
coarse scale maps of fire regime condition class in 
1999. These maps have been subjected to several re­
visions leading to widely varying estimates of the total 
area at risk of catastrophic fire. 

The USDA and USDI address the following issues 
regarding implementation of the National Fire Plan 
(USDA and USDI 2002): (1) Improving the resilience 
and sustainability of forest and grasslands at risk; (2) 
conserving priority watersheds, species, and biodiver­
sity; (3) reducing wildland fire costs, losses, and dam­
ages; and (4) ensuring public and firefighter safety. The 
United States General Accounting Office (GAO), in a 
report evaluating the USDA and USDI strategies for 
implementing the National Fire Plan, found that gov­
ernment agencies lack adequate data for making in­
formed decisions and measuring agencies’ progress in 
reducing fuels and restoring ecosystems (U.S. GAO 
2002). This report highlighted the need for consistent, 
comparable data and emphasized three main spatial 
data needs: (1) Data for prioritizing wildland–urban 
interface communities within the vicinity of federal 
lands that are at high risk from wildland fires; (2) col­
lection and compilation of adequate data to expedite 
the project planning process; and (3) data to evaluate 
the effectiveness of treatments to reduce accumulated 
fuels to decrease the reduce the risk of severe wildland 
fire (U.S. GAO 2002). Prioritizing landscapes for treat­
ments is a unifying theme in the potential application 
of maps of fuels and fire regimes to ecological resto­
ration or hazardous fuels mitigation. The work pre­
sented in this paper forms the foundation for a stan­
dardized, comprehensive suite of methods for devel­
oping broad-scale, high-resolution spatial data for eval­
uating ecosystem status, conserving watersheds and 
biodiversity, and ensuring public and firefighter safety. 
Information about current interagency efforts toward 
broad-scale mapping of fuels and fire regimes for the 
United Stated is available online.4 

In the near future, broad-scale data will be available 
that may replace some or all of the advanced spatial 
data derivation and ecosystem simulation that was nec­
essary for this study. The launch of the US govern­
ment’s Terra satellite has ushered in a new era for nat­
ural resource mapping. The Moderate Resolution Im­
aging Spectroradiometer (MODIS) sensor on the Terra 
satellite is linked to complex software that will generate 
global maps of ecosystem variables such as net primary 
production and evapotranspiration every day and over 
the course of a growing season at 1-km2 resolution. 

4 URL: (www.landfire.gov) 

http:www.landfire.gov


92 Ecological Applications MATTHEW G. ROLLINS ET AL. 
Vol. 14, No. 1 

The National Elevation Database provides standardized 
30-m digital elevation models for the entire United 
States, and an updated version of STATSGO (state soil 
geographic database) soil texture and soil depth data 
will be available nationwide by 2002.5 The DAYMET 
database, now available, provides summaries of an 18­
year daily record of temperature, precipitation, and so­
lar radiation (along with confidence intervals) at 1-km2 

resolution for the continental United States.6 The 
MODIS, STATSGO, and DAYMET products provide 
excellent information for broad-scale landscape char­
acterization, and could potentially replace most of the 
complex ecosystem simulation modeling used in this 
study. 

CONCLUSIONS 

Integration of remote sensing, simulation modeling, 
and gradient analysis proved to be an efficient, suc­
cessful approach for mapping broad-scale fuel and fire 
regime characteristics. The ability of remote sensing 
and ecosystem simulation to portray spatial distribu­
tions of direct, resource, and functional gradients en­
ables the efficient construction of reasonably accurate 
maps that are critical for both fire managers and ecol­
ogists. No single statistical approach proved superior 
for predictive landscape mapping. The maps created 
improve our ability to compare fire regimes between 
regions and facilitate communication between fire man­
agers and fire ecologists. A gradient-based approach to 
mapping fuels and fire regimes enables the simulation 
of potential changes in these factors and facilitates 
comparison of past fire regimes with current conditions, 
providing valuable information for evaluating the ex­
tent and rates of ecosystem change. The findings of this 
study provide a framework for development of an stan­
dardized, automated system that creates maps of fuels 
and fire regimes for any area using combinations of 
field inventories, remotely sensed data, biophysical 
data, and multivariate statistical approaches. This ap­
proach is appropriate for local to regional applications 
and over a wide variety of ecosystems because maps 
are based on predictive variables representing impor­
tant ecosystem processes that determine fuels and fire 
regimes across multiple scales. Resulting maps provide 
information to evaluate landscape and quantify the haz­
ards and risks of wildland fire when making decisions 
about how best to restore forests of the western United 
States to within historical ranges and variability. 

Maps of fuels and fire regimes are critical for man­
aging broad-scale fire hazard that has resulted from 
nearly a century of fire exclusion in the United States 
and elsewhere. In recent years, the number of large, 
severe wildfires has grown dramatically in the western 
United States, increasing the risk of permanently and 
comprehensively changing ecosystem dynamics and 

5 URL: (www.ftw.nrcs.usda.gov/stat data.html)
 
6 URL: (www.daymet.org)
 

decreasing public and firefighter safety. It is estimated 
that 73 562 393 ha of forested lands in the interior West­
ern United States are at risk of catastrophic wildfire 
(Schmidt et al. 2002). This historically unprecedented 
level of fire hazard has precipitated the realization that 
a lack of comprehensive spatial data hinders the eval­
uation of fuels and fire regimes at landscape to regional 
scales. 

The methods presented in this paper provide a basis 
for creating a standardized, interagency approach to 
comprehensively and consistently mapping the char­
acteristics of wildland fire in almost any ecosystem at 
broad scales. Existing vegetation communities repre­
sent a dynamic equilibrium with the frequency, sever­
ity, and spatial patterns of past wildland fires. The role 
of wildland fire as a disturbance process is entrained 
by climate, and complex feedbacks between vegetation 
and fire processes make wildland fire an important me­
diator of climate–vegetation relationships. Fire man­
agers must consider climate variability, a legacy of fire 
exclusion, and the hazards and risks of management 
action when making decisions about how best to restore 
forests of the western United States to within historical 
ranges of variation. 
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