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Abstract 

Landscape patterns in the northwestern United States are mostly shaped by the interaction of fire and succession, 
and conversely, vegetation patterns influence fire dynamics and plant colonization processes. Historical landscape 
pattern dynamics can be used by resource managers to assess current landscape conditions and develop target spatial 
characteristics for management activities. The historical range and variability (HRV) of landscape pattern can be 
quantified from simulated chronosequences of landscape vegetation maps and can be used to (1) describe temporal 
variation in patch statistics, (2) develop limits of acceptable change, and (3) design landscape treatment guidelines for 
ecosystem management. Although this simulation approach has many advantages, the limitations of this method have 
not been explored in detail. To demonstrate the advantages and disadvantages of this approach, we performed several 
simulation experiments using the spatially explicit, multiple pathway model a LANDscape Succession Model 
(LANDSUM) to quantify the range and variability in six class and landscape pattern metrics for four landscapes in 
the northwestern United States. First, we applied the model to spatially nested landscapes to evaluate the effect of 
landscape size on the HRV pattern metrics. Next, we averaged the HRV pattern metrics across maps generated from 
simulation time spans of 100, 500, and 1000 years and intervals 5, 10, 25 and 50 years to assess optimal output generation 
parameters. We then altered the elevation data layer to evaluate effect of topography on pattern metrics, and cut various 
shapes (circle, rectangle, square) from a landscape to examine landscape shape and orientation influences. Then, we 
altered the input vegetation maps to assess the influence of initial conditions on landscape metrics output. Finally, a 
sensitivity analysis of input fire probabilities and transition times was performed. Results indicate landscapes should 
be quite large to realistically simulation fire pattern. Landscape shape, and orientation are critically important to 
quantifying patch metrics. Simulation output need only be stored every 20–50 years but landscapes should be simulated 
for long time periods (�1000 years). All landscapes are unique so conclusions generated here may not be entirely 
applicable to all western US landscapes. © 2002 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

Vegetation pattern often reflects the cumulative 
and interactive effects of disturbance regimes, bio­
physical environments, and successional processes 
(Baker, 1989; Bormann and Likens, 1979; Crutzen 
and Goldammer, 1993; Pickett and White, 1985; 
Wright, 1974). Landscapes of the northwestern 
United States are primarily shaped by wildland 
fire and vegetation succession, and conversely, 
these patterns will invariably influence future fire 
patterns, regeneration and colonization processes, 
and plant development (Hessburg et al., 1999a; 
Keane et al., 1998; Turner et al., 1994; Veblen et 
al., 1994). It follows, then, that some general 
properties of disturbance regimes may be de­
scribed from spatio-temporal patch dynamics 
(Hessburg et al., 1999b; Forman, 1995; Swanson 
et al., 1990). For example, large patches may 
indicate a fire regime dominated by large, severe 
fires (Baker, 1989; Baker et al., 1991; Keane et al., 
1999). Using this inference, patch and landscape 
characteristics can be used to assess, design, and 
plan ecosystem management activities (Baker et 
al., 1991; Keane et al., 2000). For example, the 
range of patch sizes on a landscape over time can 
be used to design the size of a prescribed fire 
(Cissel et al., 1999; Swetnam et al., 1999; Mlade­
noff et al., 1993). Current landscape conditions 
can also be compared with summarized historical 
landscape conditions to detect ecologically signifi­
cant change, such as that brought on by fire 
exclusion and timber harvesting (Baker, 1992, 
1995; Cissel et al., 1999; Hessburg et al., 1999b; 
Landres et al., 1999). 

Landscape structure and composition are usu­
ally characterized from the spatial distribution of 
patches—a term synonymous with stands or 
polygons (McGarigal and Marks, 1995). Many 
types of spatial statistics, often called class and 
landscape metrics, are used to quantitatively de­
scribe patch dynamics of landscapes (Turner and 
Gardner, 1991; McGarigal and Marks, 1995). 
They are calculated by importing spatial thematic 
data layers, usually from a Geographic Informa­
tion System (GIS), into any of the many land­
scape metrics programs available (e.g. 
FRAGSTATS, McGarigal and Marks, 1995, R.LE, 

Baker and Cai, 1990). Landscape metrics statisti­
cally portray distributions of patch shape, size, 
and adjacency by patch class (i.e. label or cate­
gory) across many scales (e.g. individual patch, 
class, and landscape; Cain et al., 1997; Hargis et 
al., 1998). These metrics are important, because, 
they allow a consistent, comprehensive, and ob­
jective comparison among and across landscapes, 
even though it is difficult to test these metrics for 
statistical significance as yet (Turner and Gardner, 
1991). 

The historical range and variability (HRV) of 
landscape pattern characteristics provides a useful 
concept for planning and designing landscape 
treatments (Parsons et al., 1999; Landres et al., 
1999). In this paper, we define HRV as the quan­
tification of temporal fluctuations in ecological 
processes and characteristics prior to European 
settlement (i.e. before 1900). Naturally, HRV is 
highly scale-dependent and inherently unstable. 
For instance, the variability of ponderosa pine 
cover across a landscape greatly depends on the 
range of years used to compute HRV statistics. 
Despite its drawbacks, the HRV concept has the 
potential to be indispensable to ecosystem man­
agement, because, it can be used to define limits 
of acceptable change (Swetnam et al., 1999) for 
assessing stand or landscape condition to priori­
tize for restoration treatments (Hessburg et al., 
1999a). Since HRV estimates do not integrate 
future trends in climate change and human activi­
ties, we feel that HRV is not the final answer to 
spatial considerations in land management, but it 
does provide a good reference point for planning 
future management projects. 

The range and variation of historical patch 
dynamics can be quantified from three main 
sources. The best source is a chronosequence (i.e. 
a sequence of maps of one landscape from many 
time periods), which can be input to landscape 
pattern analysis programs to compute HRV pat­
tern results. Unfortunately, temporally deep 
chronosequences of historical landscape condi­
tions are absent for many western landscapes, 
because, aerial photography or satellite imagery 
are rare or non-existent prior to 1930. Second, 
vegetation maps from many similar, unmanaged 
landscapes, taken from one or more time periods, 
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can be gathered across a geographic region and 
input to spatial analysis programs (Hessburg et 
al., 1999a). This spatial series essentially substi­
tutes space for time (Hessburg et al., 1999c; Pick­
ett, 1989) and assumes that because all landscapes 
in the series display highly similar environmental, 
disturbance, topographical, and biological condi­
tions. Since aerial photographs are absent prior to 
1930, historical spatial series must be created from 
comparable remote, unsettled watersheds mapped 
with the earliest imagery possible (Hessburg et al., 
1999a). A big limitation of this approach source is 
that subtle differences in landform, relief, soils, 
and climate make each landscape unique. How­
ever, landscapes can be grouped according to the 
processes that govern vegetation, such as climate, 
disturbance, and species succession (Hessburg et 
al., 2000). 

The third method of quantifying HRV involves 
simulating a landscape to produce a chronose­
quence of simulated maps to compute landscape 
metrics. This approach assumes that succession 
and disturbance processes are simulated accu­
rately in space and time, and that the spatial 
properties of the disturbance simulation are 
reflected in the patch dynamics (Keane et al., 
1999). Many spatially explicit ecosystem simula­
tion models are available for quantifying HRV 
patch dynamics (see Mladenoff and Baker, 1999), 
but most are computationally intensive, difficult 
to parameterize and initialize, and complex in 
design, thereby making them difficult to use in 
everyday management applications. On the other 
hand, those models designed for management 
planning tend to oversimplify successional devel­
opment and disturbance initiation, spread and 
effects (Chew, 1997; Beukema and Kurtz, 1995; 
Keane et al., 1996, 1997). 

Regardless of model complexity and detail, 
there are still other considerations associated with 
the simulation approach for quantifying HRV. 
For example, the size, shape, orientation, topo­
graphic complexity, initial conditions, and report­
ing interval can influence spatial pattern dynamics 
and associated estimates of HRV. This paper 
explores the advantages and limitations of using 
the simulation approach to quantify the HRV of 
landscape pattern dynamics. The LANDSUM 

model (Keane et al., 1996) was used to spatially 
simulate historical succession and disturbance 
processes on four very different landscapes in the 
Pacific Northwest over 1000 years. Summary 
statistics of selected class and landscape metrics 
were reported for each simulated landscape. Then, 
results from a series of simulation experiments are 
presented to demonstrate some limitations of the 
simulation approach and to provide important 
information for interpreting these pattern statis­
tics. Results from this effort can be used to plan 
and implement landscape-scale ecosystem man­
agement activities. 

2. Methods 

2.1. The model 

The LANDscape Succession Model (LAND­
SUM) is a spatially explicit vegetation dynamics 
simulation C+ +  program wherein succession is 
treated as a deterministic process and distur­
bances (e.g. fire, insects, and disease) are treated 
as a stochastic processes (Keane et al., 1997). 
LANDSUM simulates succession within a patch 
(adjacent similar pixels) or polygon using the 
multiple pathway fire succession modeling ap­
proach presented by Kessell and Fischer (1981). 
This approach assumes all pathways of succes­
sional development will eventually converge to a 
stable or climax plant community called a poten­
tial vegetation type (PVT; Fig. 1). A PVT iden­
tifies a distinct biophysical setting that supports a 
unique and stable climax plant community under 
a constant climate regime. There is a single set of 
successional pathways for each PVT present on a 
given landscape (Arno et al., 1985). Successional 
development within a patch is simulated as a 
change in structural stage and cover type (to­
gether called a succession class) simulated at an 
annual time step. The length of time a patch 
remains in a succession class (transition time, 
years) is an input parameter that is held constant 
throughout the simulation. Disturbances disrupt 
succession and can delay or advance the time 
spent in a succession class, or cause an abrupt 
change to another succession class. Occurrences 
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of human-caused and natural disturbances are 
stochastically modeled from probabilities based 
on historical frequencies. All disturbances were 
simulated at a patch-scale, except for wildland 
fire, which is discussed next. 

The simulation of fire behavior and effects pre­
sented a special challenge, because of LAND­
SUM’s simplistic structure. Some spatial models 
assume a random or patch-to-patch fire spread 
(Beukema and Kurtz, 1995; Chew, 1997), which 
maintains map integrity but misrepresents the dy­
namics of fire growth (Keane et al., 2000). Wild-
land fires tend to split patches along topographic, 
fuel, moisture, or wind gradients and rarely follow 
patch boundaries (Finney, 1999). Inclusion of a 
detailed mechanistic fire growth model, such as 
FARSITE (Finney, 1998), into LANDSUM was 
not possible, because, the addition of required 
fuels and weather input data would create an 
overly complex model that would find little use in 
management. We decided to create a new version 
of LANDSUM (version 2.0) that simulated spa­
tial fire dynamics and its effect on landscape 

pattern and composition using an approach that 
balanced simplicity and applicability with realism. 

In general, the simulation of fire can be repre­
sented by three phases, initiation; spread; and 
effects. Ignition in LANDSUM is stochastically 
simulated from the fire probabilities assigned to 
each initial polygon based on its PVT, cover type, 
and structural stage. The following three-parame­
ter Weibull hazard function was employed to 
account for fuel buildup (i.e. years since burn— 
YSB, years) and a no-burn period directly after a 
fire (REBURN, years).  L   YSB−REBURNn(L−1) 

Pf = (1)
FRI FRI 

where, L is the shape parameter (parameterized at 
2.0 for this study), FRI is the fire return interval 
or the inverse of fire probability (years), and Pf is 
the probability of fire. We estimated REBURN at 
3.0 years in this study. The probability Pf was 
then adjusted to account for the size of the 
polygon and then compared with a random num­
ber. If the random number was lower than Pf, a  

Fig. 1. An example of the multiple successional pathway approach used to simulated succession in LANDSUM for the high 
elevation subalpine fir PVT (Keane et al., 2000). Cover types are SH, shrub/herb; WP, whitebark pine; LP, lodgepole pine; SF, 
subalpine fir. Structural stages are SGF, shrub/grass/forb; SIN, stand initiation; SEC, stem exclusion closed; SEO, stem exclusion 
open; URI, understory reinitiation; OFM, old forest multistrata; OFS, old forest single strata. 
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fire was started on a randomly selected pixel 
within that polygon. 

Fire was spread across the landscape at a pixel-
level using directional vectors of wind and slope. 
Wind direction (degrees azimuth) is an initial 
input to the model but then it is randomly 
modified within 45 ° of the input direction for 
each simulated fire. Wind speed (m s−1) is also an 
input parameter that is randomly adjusted within 
0.5 times of a user-specified input value for each 
fire. Slope (%) is calculated from a digital eleva­
tion model (DEM), which is a required input map 
in LANDSUM. The number of pixels to spread 
the fire in eight possible directions (N, NE, E, SE, 
S, SW, W, NW) is calculated from the following 
relationship, which we modified from Rothermel 
(1991). 

spix= (windf)(slopef) (2) 

where spix is the number of pixels to spread in a 
direction, windf and slopef are wind and slope 
factors that are computed from the following 

(1+3.5 e10b) 

equations. 

windf = (1+0.125w)(cos(abs(es −ew))w0.6 
(3) 

slopef = 
4 

(4) 

where w is wind speed (mph), abs is absolute 
value, es the spread direction, ew the wind direc­
tion, and b is slope (rise over run; Rothermel, 
1991). The slope factor applies to only positive 
slope values (upslope spread). Downslope spread 
is computed as: 

3b2
slopef =e (5) 

These equations were solved for each pixel ig­
nited by the fire, originating from a randomly 
selected fire start pixel mentioned above. Only 
those pixels of patches having assigned fire return 
intervals less than the simulation time period were 
allowed to burn, except for those patches where 
Pf was zero, such as in a recently burned patch. 
Rounding of the computed spix to the nearest 
pixel (30 m in this study) was stochastically deter­
mined from a uniform random number generator. 
Initially, we let fires burn until they hit the land­
scape boundary or an unburnable patch, but we 

found that too much land that was burning on the 
simulated landscapes. We then limited fire spread 
by stochastically calculating a maximum fire size 
(FIRESIZE, ha) for each fire from the following 
equation: 

FIRESIZE=a ln(RN)L (6) 

where a is the magnitude parameter that approxi­
mated the average fire size (ha) estimated to be 
approximately 10–50 ha in this study from the 
NIFMID data base (Schmidt et al., 2002), RN is 
a random number from a uniform probability 
distribution, and L is a shape parameter estimated 
as 3.0 for this study. 

Fire effects were stochastically determined 
within each burned stand. Probabilities of three 
fire severities (stand-replacement, mixed severity, 
and non-lethal surface fires) were assigned to each 
mapped polygon (i.e. patch) based on PVT, cover 
type, and structural stage (Keane et al., 1996). 
The inverse of the sum of these probabilities was 
used as FRI in Eq. (1), but in calculating fire 
effects, these probabilities were relativized (scaled 
from 0.0 to 1.0) and a random number was 
compared with the cumulative relativized proba­
bility distribution to select the severity of the fire 
to simulate. We also included a slight chance (0.05 
probability) that the polygon would not burn at 
all. The selected fire severity would then deter­
mine the appropriate successional pathway (see 
Fig. 1). 

2.2. The landscapes 

Four very different landscapes were used in this 
simulation exercise (Fig. 2). The 516 917 ha Sel­
way landscape in central Idaho represents the 
largest simulation area with a wide diversity of 
vegetation and biophysical settings (see Habeck, 
1972). The Dahlonega watershed in east-central 
Idaho on the Salmon-Challis national forest is a 
large landscape (22 338 ha) that contains relatively 
simple succession and fire processes on a homoge­
nous landscape. The Flathead and Grande Ronde 
watersheds are small landscapes (<20 000 ha) 
composed of a wide variety of PVT’s that contain 
complex successional pathways and fire dynamics. 
Fire has played a critical role in shaping all four 
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Fig. 2. The suite of simulation landscapes used in this simulation study. The sizes of the landscapes are (a) Grande Rhonde 7460 
ha; (b) Flathead 8945 ha; (c) Selway 516 917 ha; and (d) Dahlonega 22 338 ha. 

of the selected landscapes. Four landscapes were 
selected to evaluate applicability of results across 
diverse settings. 

Initial input maps for each landscape were cre­
ated by delineating and digitizing polygons from 
historical aerial photography (circa 1930s) by 
highly trained personnel (Hessburg et al., 1999b). 
PVT, cover type, and structural stage were 
classified for each mapped polygon from vegeta­
tion attributes interpreted from aerial photo­
graphs. Landscapes were defined by watershed 
boundaries using the US Geological Survey (1987) 
hydrological unit code classification. Most succes­

sion pathway and patch-level disturbance parame­
ters were taken from a previous modeling effort 
and then modified to represent local conditions 
(Keane et al., 1996). All fire parameters were 
estimated from local fire atlases, previous fire 
history studies and modeling efforts, and the spa­
tially summarized NIFMID database (Keane et 
al., 1996; Schmidt et al., 2002). 

2.3. The simulation experiments 

We evaluated the effects of landscape size on 
pattern metrics using nested simulation land­
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scapes within the large Selway watershed (516 917 
ha; Fig. 2). We selected a small 2500 ha2 study 
area near the center of the Selway landscape that 
served as the context landscape for comparison. 
We then progressively created three larger land­
scapes that totally encompassed this smaller land­
scape but were still smaller than the entire Selway, 
resulting in the creation of five nested landscapes 
with similar distributions of PVT, cover types and 
structural stages (Fig. 3a). We ran LANDSUM 
on these five landscapes for 1000 years, but only 
exported raster output maps for the small context 
landscape (2500 ha) at 50-year intervals for land­
scape metric analysis. This experiment was de­
signed to evaluate the importance of fires that 
originate outside, and then spread into the context 
area, on overall landscape pattern dynamics. 

We used the Dahlonega watershed to explore 
effects of landscape shape, topographic complex­

ity, and reporting interval on landscape metrics. 
Effects of reporting interval were determined by 
simulating historical fire and succession processes 
for 100, 500, and 1000 years and exporting output 
maps every 5 years. Pattern metrics were summa­
rized across 5, 10, 20, 50, and 100-year intervals. 
Topography effects were evaluated by creating 
five new Dahlonega DEM’s by multiplying the 
original DEM by the factors of 0.0 (flat), 0.2 
(hilly), 0.5 (half relief), 1.0 (normal relief) and 2.0 
(high relief), and simulating LANDSUM with 
new DEM’s for 1000 years exporting maps every 
50 years. Effect of landscape shape was evaluated 
by creating new landscapes from Dahlonega using 
the following shapes of roughly the same area, 
narrow vertical rectangle; narrow horizontal 
rectangle; wide rectangle; square; and circle, and 
executing LANDSUM for 1000 years with maps 
output every 50 years (see Fig. 3b). Preliminary 

Fig. 3. (a) The set of spatially nested Selway landscapes used to evaluate effect of landscape size on pattern metrics (sizes progress 
from context landscape=2500 ha, box 2=10 743 ha, box 3=45 753 ha, box 4=159 920 ha, Selway=519 917 ha). (b) The five 
landscape shapes created as subsets of the Dahlonega watershed to determine shape effects on patch dynamics (vertical rectangle, 
horizontal rectangle, fat rectangle, square, and circle). 



36 R.E. Keane et al. / Ecological Modelling 151 (2002) 29–49 

analyses revealed subtle, but potentially compli­
cating, differences in landscape composition, to­
pography and underlying PVT distribution 
between the different shapes, so we ran the final 
analyses of this experiment with both neutral 
topography (no topography) and only a single 
PVT for the whole landscape. 

The Grande Ronde landscape was selected to 
evaluate the influence of initial conditions on 
patch metric variability, because of its diversity 
of vegetation types. We created four initial land­
scape composition maps of varying complexity 
by modifying the original Grande Ronde vegeta­
tion layers. The first initial input map (named 
Top 1) represented the coarsest approach, where 
we assigned only one successional class (the 
most dominant class in the original map) to all 
polygons within a PVT. A second landscape 
map (Top 3) was created by randomly assigning 
the three most dominant succession classes to all 
polygons in each PVT. The third initial map 
had the five most dominant types (Top 5). In 
the last initial landscape map (Random), we 
randomly assigned every possible successional 
class to all the polygons across the landscape. 
Using each of the four initial conditions, we ex­
ecuted LANDSUM for 1000 years with 50-year 
output intervals. 

A focused sensitivity analysis was performed 
on the Flathead landscape. We adjusted all fire 
probabilities by multiplying them by 0.5, 1.5, 
and 2.0 and ran LANDSUM for 1000 years 
with a 50-year reporting interval. We also multi­
plied the transition times between successional 
classes by the same three factors and executed 
LANDSUM under the same simulation con­
straints. We used the same random number se­
quence for all simulation experiments to 
minimize the effects of stochasticity on our re­
sults. 

2.4. Spatial pattern analysis 

Simulated chronosequences were imported 
into the FRAGSTATS spatial pattern analysis pro­
gram to compute characterize patterns at two 
levels (McGarigal and Marks, 1995). At the 
class level, metrics were summarized by patch 

type (cover type, structural stage) to provide 
consistent detail and context for interpreting 
landscape level results (Forman, 1995; Chen et 
al., 1996; Hargis et al., 1998). At the landscape-
level, metrics were summarized for the entire 
landscape without patch type stratification. We 
selected the cover type and structural stage 
maps for pattern analysis, because, we were in­
terested in patch dynamics of composition and 
structure. 

We selected a limited number of spatial met­
rics for comparing classes and landscapes. 
Hargis et al. (1998) found that only a small set 
of indices was needed, because of the redun­
dancy and dependency among metrics (also see 
Turner and Gardner, 1991). It was also impor­
tant to match the landscape metric with the bio­
logical processes that influence landscape 
structure (Chen et al., 1996). We selected patch 
density (PD, patches per 100 ha), mean patch 
size (MPS, ha), and landscape patch index (LPI) 
to represent the direct effect of disturbance pro­
cesses on patch size. LPI is maximum percent of 
the landscape occupied by one patch selected, 
because, it represents the upward bounds of 
patch or burn size. We selected relative patch 
richness (RPR), because, it reflects richness rela­
tive to maximum possible richness on a scale of 
0–100 (100=all patch types possible). The 
Modified Simpson’s evenness index (MSIEI), ex­
pressed as computed level of diversity divided 
by the maximum possible diversity for a given 
patch richness, was selected, because, it describes 
the degree to which the landscape is composed 
of one patch class. Lastly, contagion (CON­
TAG), a number between 0 and 100, measures 
the interspersion and dispersion of patches 
across a landscape. Four statistics were used to 
describe each of the six metrics. The average 
across the simulated chronosequence was used 
as the target or reference metric. The standard 
error was used to describe the variability in a 
metric. The maximum and minimum values es­
tablished the range of observations. Results 
from simulation experiments were tested for 
statistical significance using multivariate analysis 
of variance (MANOVA) in the SAS software 
package (SAS, 1990). 
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Fig. 4. Results from FRAGSTATS analysis of simulated Selway landscapes from LANDSUM over 1000 year span. These results 
provide an illustration of the simulated landscape dynamics of various patch characteristics over simulation time. Fire statistics 
include area burned over time (a), and percent of that area burned by severity class (b). Community dynamics shown are percent 
of area occupied by the three dominant cover type classes (c), and structural stages (d). Selected patch metrics over time are shown 
for cover type (e), and for structural stage (f). 

3. Results 

The set of graphs in Fig. 4 illustrates the diver­
sity of LANDSUM output generated for a por­
tion of the Selway landscape. The temporal 
distribution of burned area (Fig. 4a) and fire 
severity (Fig. 4b) influenced the composition of 
cover types (Fig. 4c) and structural stages (Fig. 
4d) on the landscape, and those simulated fires 
created unique patch characteristics that vary 
across time and differ for cover type (Fig. 4e) and 
structural stage (Fig. 4f). 

Results from the simulation experiments gener­
ated some interesting trends (Tables 1 and 2). 
Effects of landscape size on patch dynamics in the 
smallest 2500 ha context area were significant 

(P<0.0001) for both cover type and structural 
stage class and landscape metrics (Table 2). For 
the most part, these significant differences oc­
curred between two groups: the smaller two land­
scapes (2500 and 10 000 ha), and the larger three 
landscapes (45 000, 159 920, and 516 917 ha, re­
spectively). No significant differences within those 
groups were found (P>0.05). Interpretation of 
trends was more difficult, complicated by substan­
tial differences in trends between cover type and 
structure maps. For example, variability in several 
patch metrics (MPS, PD, CONTAG) increased 
with increasing simulation landscape size for 
cover type maps (Table 1), but variability de­
creased or had indeterminate trends for those 
metrics for structural stage maps. A clear trend of 
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decreasing MPS and increasing PD was observed 
within the context area as the simulation land­
scape size was increased for structural stage maps, 
but that trend was less apparent for cover type 
maps (Table 1). 

The shape of the landscape also had a signifi­
cant influence on class and landscape metrics over 
the 1000-year simulation span (Table 1). Land­
scape metrics for both cover type and structural 
stage Dahlonega maps were significantly different 
(P<0.0001) for horizontal and vertical rectangles 
(see Fig. 3b) than for all other shapes. Principal 
differences were in PD and LPI, with substantially 
lower LPI and higher PD for the horizontal 
rectangle than in the other shapes, as well as other 
differences. 

Topography had very little effect on either class 
or landscape metrics for the five Dahlonega simu­
lation scenarios (Table 1); there was very little 
difference between simulated patch metrics for the 
five topographic scenarios (P<0.48). We ran this 
entire experiment using only one PVT for the 
entire landscape, because of concern in differences 
of fire frequency by PVT, and again found no 
significant differences between the five DEM 
inputs. 

Fig. 5. Effect of initial landscape complexity on landscape 
patch metrics of cover type maps over 1000 year simulations, 
shown here for the contagion metric. Occasional peaks are the 
result of very large fires. Initial conditions were modified to 
produce a series of initial input maps varying in complexity, by 
assigning all polygons within a PVT to the single dominant 
succession class (Top1), top three dominant classes (Top 3), 
top five dominant classes (Top 5) or randomly assigned from 
all possible combinations (Random). 

It appears that initial conditions (P<0.576) do 
not have a significant influence on summarized 
class and landscape metrics over the 1000-year 
time span (Table 1). It was inconsequential 
whether the initial Grande Ronde landscape was 
totally homogeneous (one cover type and one 
structural stage) or highly heterogeneous (random 
assignment of all combinations of cover type and 
structural stages) at the start of simulation, be­
cause by approximately year 100, and certainly by 
year 200, the simulated landscapes were quite 
similar in cover type and structural stage patch 
distributions (Fig. 5). 

The reporting interval experiment on the 
Dahlonega landscape produced interesting results. 
Pattern metrics for both cover type and structural 
stage were not significantly different when sum­
marized at 5-, 10-, 20- or 50-year intervals (P< 
0.98), but substantial differences were found when 
metrics were summarized at 100-year intervals 
(Table 2). Landscape and class metrics computed 
over simulation time spans of 100 years were 
significantly different to those computed over a 
500- or 1000-year period (P<0.0001, Table 2 and 
Fig. 6). It appears likely, then, that a 100-year 
time span is too short for generating useful land­
scape metrics summary statistics, regardless of the 
reporting interval. 

Sensitivity analysis of the fire probabilities 
showed the importance of these parameters in 
generating realistic landscape patterns (Table 1). 
Pattern statistics were significantly different for 
both cover type (P<0.0029) and structural stage 
(P<0.0001) maps for each set of fire multipliers. 
For the structural stage maps, the set of simula­
tion runs were clearly separated into two statisti­
cally significant groups; those simulations where 
multipliers were less than or equal to 1 and simu­
lations with multipliers >1. Separation was not 
so clear for the cover type maps, with variable 
grouping and differences by patch metric. Struc­
tural stage metrics show a distinct tendency to­
ward patch aggregation as fire frequencies 
increase, and cover type metrics became more 
highly variable with increasing fire frequency. 

Results for transition time sensitivity analysis 
were similar to those of the fire probabilities 
experiment. Landscape patch metrics for struc­
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Fig. 6. Line graphs of largest patch index for structural stage by simulation year for six reporting intervals, (a) 5 years; (b) 10 years; 
(c) 20 years; (d) 50 years; (e) 100 years; and (f) 250 years. 

tural stage were significantly different (P< 
0.0013), and separated into the same two multi­
plier groups seen in the fire probabilities 
experiment. Differences in patch metric statistics 
for cover type maps were not as significant (P< 
0.0529) and were difficult to interpret. 

4. Discussion 

These LANDSUM simulation experiments il­
lustrate some of limitations of using simulation 
modeling to describe the range and variation of 
historical landscape patch dynamics. First, the 

size of the simulation landscape significantly influ­
ences fire spread and patch dynamics. Small land­
scapes did not experience the immigration of 
simulated fires from outside the study area. As a 
result, the landscape fire rotation within small 
landscapes was often overestimated. This was es­
pecially evident on simulated landscapes with the 
propensity for large fires. Judging from our lim­
ited results, it appears that the influence of size of 
the simulation landscape tends to stabilize at 
around eight to ten times the size of the analysis 
landscape for those areas similar to the Selway 
landscape (Table 1 and Fig. 7). However, this 
factor may be quite different for other landscapes, 



42 R.E. Keane et al. / Ecological Modelling 151 (2002) 29–49 

such as Yellowstone National Park (Gardner et 
al., 1997) and Wisconsin, USA (He and Mlade­
noff, 1999). Those biomes that experience large 
fires, such as boreal forests, may need much larger 
simulation areas to realistically simulate land­
scape patch dynamics (Amiro et al., 2000). Wim­
berly et al. (2000) also found that smaller 
simulation areas increased variation across model 
runs for landscape composition metrics in the 
Oregon Coast range where large fires are 
common. 

Another important spatial characteristic that 
influences patch dynamics was simulation land­
scape shape, and, related to shape, landscape 
orientation. Simulations on narrow, linear land­
scapes will tend to underestimate fire spread and 
burned area (Table 1), because of the lack of fire 
immigration as mentioned above, and also, be­
cause, fires that originate in these elongated land­
scapes tend to reach the landscape edge well 
before reaching their full size. This effect was 
accentuated when the narrow portion of the land­
scape was perpendicular to predominant wind 
direction; fires were quickly blown out of land­
scape before they reached significant sizes. There 
was very little difference between the square and 
circular landscapes, because, there was no short 

axis to allow the orientation bias. Fire spread 
simulations on landscapes with elongated shapes 
created smaller patches, particularly in structural 
stage maps (Table 1), because of the decreased 
potential spread area and the interaction with 
landscape edge. Our results agree with Camp et 
al. (1997) who also found that orientation of the 
topography governs fire spread dynamics. Those 
landscapes having ridge systems that were aligned 
perpendicular to the wind flow and near land­
scape edges had underestimated burned area, be­
cause, both slope and wind reduce the width of 
the headfire (Finney, 1999). It appears landscapes 
defined by watershed boundaries, especially those 
less than 50 000 ha, may make poor simulation 
areas, because of the tendency of watersheds to be 
elongated along river systems with the center of 
the landscape always the lowest in elevation 
thereby biasing fire ignition and spread. 

To evaluate the effects of between-run variabil­
ity on patch metric HRV, we conducted a Monte 
Carlo simulation, with 20 runs of 1000 years for 
the Grande Rhonde landscape (Fig. 8). Although 
there was substantial variability in the number, 
size and timing of fires, and corresponding com­
munity dynamics, patch metric statistics remained 
quite stable, with no significant differences in 

Fig. 7. Effect of landscape size on MPS within 2500 ha context area in the Selway landscape. MPS within the context landscape is 
affected by the size of the surrounding area; this influence appears to stabilize when size of the surrounding area is roughly eight 
to ten times the size of the context landscape. 
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Fig. 8. Range of results for 20 LANDSUM model runs of the same Grand Ronde landscape showing the inherent stochastic 
variation in predictions of percent landscape for the dominant cover type (a) (ponderosa pine) and structural stage (b) (stem 
exclusion structure). Both cover type and structure show substantial changes between initial values and mean; this difference suggests 
that initial values fall outside the simulated range of variability. 

patch metric statistics for either cover type (P< can be quantified from very few simulation runs. 
0.27) or for structural stage (P<0.99). This could It was somewhat surprising that the initial con-
indicate that between-run variability is low and ditions of the simulation landscape did not seem 
adequate landscape patch metric HRV dynamics to affect long-term patch dynamics. This is proba­
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bly because, the simplistic succession and fire 
simulation approach implemented in LANDSUM 
constrained potential landscape trajectories and 
caused most landscapes to eventually converge to 
a single equilibrium condition (Fig. 5). This sim­
plistic approach usually generates landscape met­
ric predictions with low variability (Fig. 8). More 
complex landscape models tend to be highly sensi­
tive to initial conditions and often predict differ­
ent landscape trajectories with relatively minor 
changes in initial landscape composition and 
structure making predictions more highly variable 
(Keane et al., 1999; He and Mladenoff, 1999). 
The simplistic approach also resulted in question­
able fire perimeters, which in turn affected the 
realism of resulting vegetation patterns. For ex­
ample, Camp et al. (1997) found late-successional 
forest stands tended to be located within a fairly 
restricted range of environmental conditions that 
are somewhat predictable. To simulate accurate 
fire patterns, complex fire models requiring exten­
sive daily weather (wind, temperature, humidity, 
precipitation) and fuel moisture input data are 
needed, but these parameters are difficult to ob­
tain across an entire landscape (Finney, 1999). 

Two important criteria must be decided upon 
before a simulation approach can be adapted to 
quantify HRV of landscape conditions. First, an 
adequate simulation time span must be selected 
that matches model application objectives with 
computing resources. We found that shorter simu­
lation periods (e.g. 100 years or less) may result in 
inadequate landscape patch metric statistics 
(Table 2). A likely reason for this difference is 
that the 100-year simulation did not have the 
temporal depth to include effects of fires in PVTs 
with long fire return intervals (Lertzman et al., 
1998). We suggest that the simulation time span 
be at least ten times the longest fire return interval 
on those sites that occupy at least 10% of the 
landscape, but these thresholds will vary by land­
scape. Second, the temporal density of chronose­
quences (i.e. reporting interval) must be chosen as 
a compromise between available analysis re­
sources, management objectives, and temporal au­
tocorrelation (Baker et al., 1991). We found that 
short reporting intervals (5, 10, and 25 years) did 
not result in more accurate pattern descriptions 

when compared with those computed from maps 
generated at 50-year intervals (Table 2). However, 
longer intervals of 100 and 250 years generated 
significantly different results from the shorter in­
terval chronosequences, because of vast differ­
ences in the variance, maximum, and minimum 
values (Fig. 6). It appears that a 50-year reporting 
interval is sufficient for LANDSUM applications. 

The relative sensitivity of the fire probability 
and insensitivity of succession transition time in­
put parameters were unexpected results in the 
LANDSUM simulation experiments. Less fre­
quent fires (probabilities multiplied by 0.5) did 
not influence long-term patch dynamics when 
compared with the reference probability set (mul­
tiplication factor of one), presumably, because, 
the full range of seral and climax cover type and 
structural stage types remained on the landscape. 
However, when fire return intervals were short 
(multiplication factors of 1.5 and 2.0), the struc­
tural stage and cover type patches became larger 
as more of the landscape moved into the single 
story, old growth structural stage and seral, fire-
dependent ponderosa pine and larch cover types 
that are created by low severity fire (Keane et al., 
1996). These results may indicate that fire proba­
bilities, although important, need not be esti­
mated with a high degree of accuracy, but they 
must be consistently applied. 

Differences in transition time sensitivity analy­
ses were mostly evident at the extremes (multipli­
cation factors of 0.5 and 2.0) and only for 
structural stage maps and a small set of pattern 
metrics (Table 1). The lack of significant differ­
ences across metrics, particularly in cover type 
maps, was due to the dominant effects of simu­
lated fires; high frequency fire on the Flathead 
landscape overwhelmed any effect of altered tran­
sition times on patch size and density. However, 
transition times were very important for Flathead 
PVTs with long fire return intervals, because, 
succession moved patches toward climax cover 
types and structural stages before fires occurred, 
thereby reducing evenness and increasing conta­
gion. This dynamic was especially important for 
structural stage maps, because, there are only two 
old growth structural stage categories while there 
can be many old growth cover type categories, 
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which may explain why structural stage maps 
were more sensitive to both fire probabilities and 
transition times than cover type maps. Our results 
agree with He and Mladenoff (1999) who found 
that advancing succession results in larger and 
more severe fires and coarse-grained patterns with 
the LANDIS model. 

The limitations of using a simulation approach 
to determine range and variation in pattern statis­
tics as presented here may not apply to all land­
scape fire succession models, because of 
differences in model assumptions and design. For 
instance, topography did not influence fire pattern 
in the LANDSUM experiments, because of the 
overwhelming effect of the wind and, because of 
the way fire was simulated on the landscape. 
LANDSUM simulated fire spread until the fire 
reached a size computed from a negative exponen­
tial probability distribution (see Section 2). This 
resulted in realistic landscape fire rotation predic­
tions but questionable simulated fire perimeters, 

Fig. 9. Effect of the fine scale simulation of fires on landscape 
patch metrics. Fine scale simulation of fires tends to increas­
ingly fragment stand polygons over time, resulting in increas­
ing PD (top, solid line) and decreasing contagion (bottom, 
solid line). To mitigate this effect, map chronosequences were 
aggregated to 2 ha minimum map units using standard GIS 
techniques. Effect of the aggregation is shown for PD (top, 
dashed line) and for contagion (bottom, dashed line). 

because, a few fires stopped halfway up steep 
mountain slopes. For comparison purposes, we 
allowed fires to burn in LANDSUM until they 
reached unburnable polygons (e.g. rock, water, 
recent burns) or the landscape boundary, but the 
result was about two to three times more burned 
area over 1000 years than would have normally 
occurred under native fire regimes. This is be­
cause, the termination of fire spread is a complex 
process that depends not only on vegetation and 
fuels, as modeled in LANDSUM, but also on 
daily weather, fuel loading, fuel moistures, fuel 
continuity, and vegetation structure (Agee et al., 
2000), which are highly complex and difficult to 
simulate in a spatial environment. Other fire 
spread models terminate spread along topo­
graphic controls to generate realistic fire regimes, 
but the generated patterns may not match those 
observed on actual landscapes (Andrews, 1990). 
Land managers must select the appropriate fire 
and succession modeling scheme for their 
application. 

There are other drawbacks of the simulation 
method for the estimation and interpretation of 
HRV landscape metrics that were not evaluated in 
this study. First, map integrity is often compro­
mised, because, spatial simulations of fire spread 
will dissect stands to create many smaller 
polygons over long simulation times, especially in 
portions of the landscape where fires are common. 
This results in sustained increases in PD and 
decreases in patch size throughout the simulation 
(Fig. 9). Still more confounding is that, in parts of 
the landscape that have long fire return intervals, 
patch boundaries often remain relatively un­
changed from the initial conditions (Keane et al., 
2000). Including the initial polygon layer and 
early simulated layers with later simulated 
chronosequences for computation of HRV patch 
statistics is probably inappropriate, because of 
these differences in mapping resolution. Simulated 
fires are mapped at 30-m pixel resolution whereas 
initial polygons are created using much broader 
mapping criteria (e.g. minimum map units of 4 
ha). We aggregated the small polygons to mini­
mum map units of 4 ha using standard GIS 
techniques to make all maps consistent (Fig. 9), 
but detail in fire simulations was lost. This is a 
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problem for most landscape fire succession mod­
els where fire spread is simulated as an indepen­
dent disturbance process. 

The classification resolution of modeled land­
scape elements also affects HRV metrics (Wick­
ham et al., 1997). Map elements were 
constrained to the states or successional classes 
represented in the multiple pathway model, no 
matter how broadly or narrowly they were 
defined. Landscape formations and features with 
unique species assemblages, such as seeps, ripar­
ian bottoms, and frost pockets, which can di­
rectly contribute to patch composition and 
structure, were missing from this analysis, be­
cause, they were not explicitly included in the 
pathway model. Inclusion of additional PVTs on 
the landscape does not always increase classifica­
tion resolution because many of the same cover 
types and structural stages may occur across sev­
eral PVTs. 

It is extremely difficult to validate or assess 
accuracy of landscape fire succession models, be­
cause, temporally deep spatial data sets of fire 
and vegetation are rare. Instead, we compared 
landscape metrics of Selway fire perimeters com­
piled by Rollins et al. (2002) with those fire 
perimeters simulated by LANDSUM for the Sel­
way (Fig. 10). LANDSUM fires compared well 
with the Selway fires in area (Fig. 10c) and shape 
(Fig. 10a), but differed in fractal dimension. This 
is a result of scale and mapping resolutions 
rather than simulation inaccuracies. Selway fire 
perimeters were coarsely drawn on low resolu­
tion maps (1:100 000 mapscale) and then digi­
tized into a GIS, whereas the LANDSUM fires 
are simulated on a fine scale, 30-m pixel raster 
layer. Consequently, scale inconsistencies over­
whelm the simulated-to-reference comparison 
and cause differences to appear in the metrics. 
This will be a problem for any spatial validation 
dataset. 

5. Summary and conclusions 

This paper demonstrates how the HRV of 
landscape composition and structure can be de­
scribed from class and landscape metrics com­

puted from simulated chronosequences. HRV 
statistics can be used to assess, prioritize, com­
pare, and design landscapes for possible restora­
tion treatments. However, simulated 
chronosequences rely on inexact computer mod­
els that are based on oversimplifications of dis­
turbance and succession processes that result in 
major limitations. These limitations are model-
and landscape-specific so it is difficult to general­
ize on techniques to mitigate the potential simu­
lation shortcomings. But, using the LANDSUM 
model as an example, we found the following 
limitations of using simulation modeling to as­
sess range and variation of landscape patch dy­
namics. 
1. Simulation landscape size, shape, and orienta­

tion can affect patch dynamics by excluding 
large fires immigrating from outside the analy­
sis landscape and by limiting fire spread, be­
cause of biases in wind direction, topography, 
and landscape boundaries. 

2. Input parameters need not be highly accurate 
but they should be consistently applied and 
within at least 30% of the actual value. 

3. Simulation periods should be at least ten times 
the longest fire return interval on the land­
scape to ensure the effects of all fires are 
reflected in landscape patch statistics. 

4. Output reporting	 interval need not be fre­
quent. We suggest a 50-year interval is a good 
compromise between analysis capacity and 
patch metric characterization. 

Since long-term chronosequences of actual 
landscapes are essentially unavailable, the simula­
tion approach may be the only means available 
for quantifying pattern HRV. We believe land­
scape fire succession models are not yet the per­
fect tools to quantify patch dynamics, but they 
provide an alternative evaluation resource. 
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